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Abstract—With the advent of IoT technology, smart building
management has been transformed, leading to significant im-
provements in energy efficiency and occupant comfort. Indoor
room temperature control is crucial as it affects both building
performance and occupant quality of life. Nevertheless, strin-
gent cybersecurity measures are required due to the increasing
susceptibility to cyber attacks with more IoT links in smart build-
ings. Identifying and managing unusual temperature readings is
essential to keep the system running smoothly, efficiently, and
safely. By integrating classical control methods such as PID with
anomaly detection and LSTM modeling, this approach enables
proactive anomaly identification and accurate temperature fore-
casts, rendering sustainable and resilient living conditions. This
integration optimizes resource usage and mitigates cyber risks.
This paper presents a holistic method that combines PID control,
LSTM forecasting, and anomaly detection for smart building
applications. The proposed integrated approach successfully
addresses aberrant temperature variations and enhances building
performance, as shown through experimental validation.

Index Terms—Smart Building, Anomaly Detection, Machine
Learning, PID Controller, Random Forest Classifier, FDI.

I. INTRODUCTION

In the European Union, buildings contribute to around
30-40% of overall energy consumption, with approximately
half of this usage allocated to indoor climate regulation [1].
Globally, buildings now surpass industry and transportation
combined in terms of environmental impact. Despite this,
many buildings continue to utilize outdated technologies for
climate control, resulting in significant energy inefficiencies
compared to newer approaches [2].

With the onset of Industry 4.0 [3], the concepts of smart
cities and smart buildings are quickly gaining traction in
the market and are becoming commonplace terms among
researchers. Smart cities, with their interconnected and intel-
ligent infrastructure, have shown promise in improving the
standard of living in cities as well as addressing a range of
urban issues. In recent years, smart buildings have emerged as
a promising solution for optimizing energy consumption and
improving occupant comfort [4].

In a recent incident, smart thermostats in Finland fell victim
to a security breach, leading to severe cold conditions for
residents during the winter [5]. The infamous Mirai malware,
which gained widespread attention in 2016, orchestrated large-
scale distributed denial-of-service attacks targeting multiple
high-profile entities [6]. These incidents underscore the vulner-
abilities of Internet of Things (IoT) devices and the potential

risks associated with their exploitation. Due to the widespread
adoption of smart meters, security attacks like False Data
Injection (FDI) [7] have become more common, targeting
sensor networks in smart buildings by inserting false readings.
Machine learning plays an important role in IoT security by
analyzing data for irregular patterns, allowing it to discover
and fix vulnerabilities proactively. However, challenges remain
in combating cyber-attacks, specifically the absence of special-
ized intrusion detection systems for IoT devices and cloud data
centers capable of identifying zero-day attacks [8].

Modifications are often necessary to increase user comfort
and energy efficiency in buildings since they lack sustainability
features. However, budget restraints and the slow replacement
of components make significant improvements almost impossi-
ble. Developing building energy management systems (BEMS)
using software-based IoT technology solutions is a well-
known sought-after option [9]. BEMS operates in real-time to
optimize energy use by monitoring and controlling HVAC sys-
tems, either reactively or proactively. Effective HVAC systems
need a lot of computing power, but there is a growing need
for more straightforward, energy-efficient economical options
specifically designed for residential buildings [10]. This paper
aims to use machine learning-based anomaly detection and
temperature regulation to decrease energy consumption, im-
prove building efficiency, and enhance predictive maintenance
and user comfort in smart buildings.

Inefficient and uncomfortable indoor climate control is a
common problem with reactive HVAC systems in smart build-
ings. Proactive measures similar to predictive maintenance
are essential to maximize efficiency and comfort. Identifying
early anomalies in indoor climatic parameters and intervening
promptly to improve occupant well-being and decrease energy
consumption is crucial [11]. Following the detection of attacks,
implementing control strategies such as PID (Proportional-
Integral-Derivative), Fuzzy Logic, and Model Predictive Con-
trol (MPC) can facilitate the system in taking appropriate ac-
tions to mitigate the impact of the attacks. PID controllers [12]
provide a well-established method for regulating system pa-
rameters by continuously adjusting control inputs based on
error signals, integral of errors, and their derivatives.

A. Related Work

In this subsection, we discuss relevant studies on anomaly
detection and LSTM prediction for smart buildings.



Various approaches are employed to identify and diagnose
abnormalities, establishing a foundation for robust anomaly
detection systems in smart buildings. The authors in [13]
proposed a semi-supervised clustering technique using Self-
Organizing Maps neural networks to detect unusual patterns
in smart-home user behavior based on presence sensor data.
In [14], researchers utilized a model to identify security
breaches based on user behavior, considering differences
caused by time and temperature. The authors in [15] designed
an ensemble model to identify anomalies in smart buildings.
In [16], One-Class Support Vector Machines were used to de-
termine unusual occurrences. Lastly, the study in [17] utilized
Hidden Markov Models to analyze user behaviors and detect
abnormal operations.

Neural networks outperform conventional approaches in
predicting the indoor temperature of buildings using historical
data. Their growing popularity in building energy management
applications is due to their ability to solve complex prob-
lems [18], [19]. Several studies have compared conventional
machine learning models, such as Autoregressive and Multiple
Linear Regression, with neural network models, including
MLP-NARX, Extreme Learning Machine, and Long Short
Term Memory (LSTM), in predicting indoor temperature [20].
The results indicate that both Neural Architecture Represen-
tation (NAR) architecture and LSTM models perform well,
with LSTM particularly effective at identifying key inputs
for accurate predictions [21]. Prediction accuracy can further
be improved by considering factors such as weekends and
holidays [22]. Previous work has shown that neural networks
can create accurate models for predicting indoor temperature,
although they often require large datasets for effective training
and improved accuracy [23].

Recent innovations in anomaly detection are significantly
improving the management of building systems. In [24],
researchers developed an anomaly detection system using a
two-stacked LSTM model to monitor internal environment
variables and identify outliers. The study in [25] utilizes
IoT sensors to collect data from various home appliances,
showing significant patterns in each appliance’s energy us-
age to improve power system maintenance and management.
Additionally, [26] introduces an unsupervised method for
detecting anomalies in temperature time series data using
dynamic thresholds. Another study proposes a framework for
detecting abnormal electrical loads in homes, which combines
a rule-engine-based load anomaly detector with a hybrid one-
step-ahead load predictor [27]. To the best of our knowledge,
the smart building temperature control management frame-
work has not yet integrated three essential modules: anomaly
detection, LSTM prediction, and control approaches.

B. Contributions of This Study

In this paper, we aim to integrate anomaly detection tech-
nologies with classifiers and machine learning-based con-
trollers to efficiently handle discovered anomalies and ensure
the system’s resilient functioning. This approach facilitates
proactive anomaly management and precise temperature fore-

casts, thereby improving the quality of life for occupants. Us-
ing PID controllers, smart buildings can optimize temperature
set points, which improves energy efficiency, and occupant
well-being, and increases resistance against cyber attacks.

The primary contributions of this paper are outlined below:
• Presented a new approach integrating false data injection,

machine learning-based anomaly detection, and control
techniques within a smart home environment, using a
real-world dataset to simulate an attacker’s scenario.

• Employed an LSTM model to predict future temperature
data as a threshold for detected temperature anomalies.

• Assessed the effectiveness of the anomaly detection and
classification and LSTM modules using various perfor-
mance indicators.

• To handle falsified temperature fluctuations, a PID con-
troller is used to dynamically adjust temperature values
to predetermined thresholds based on LSTM predictions.

• To ensure the validity and applicability of our findings,
real-time datasets are used for anomaly detection and
threshold prediction. Experiments will be conducted on
our smart city testbed [28] to validate the effectiveness
and real-world applicability of our proposed approach.

The structure of the paper is as follows: Section II delves
into the theoretical foundations of the methods used, while
Section III presents the proposed integrated approach and its
different modules. Section IV illustrates the experimental data
and simulation analysis. The paper concludes with Section V.

II. THEORETICAL BACKGROUND

A. Random Forest Classifier

Random forests algorithm is an ensemble of decision trees
first introduced in [29], which comprises decision trees, each
contributing a vote towards a specific class. According to [29],
random forests are more resistant to noise and produce
more accurate tree classifiers than Adaboost. A learning set
L = {(M1, N1), . . . , (Mn, Nn)} made of n vectors, M ∈ X
where X is a set of numerical or symbolic observations, and
N ∈ Y where Y is a set of classes [30] can be considered.
In classification tasks, a classifier, which is represented as
a mapping X → Y , assigns class labels to input vectors.
Each tree independently classifies a new input vector in a
forest of decision trees, producing a specific classification
result. The final decision is determined by aggregating the
decisions of all trees in the forest, resulting in a majority vote
for classification or averaging for regression. This aggregation
process constitutes the ensemble’s prediction mechanism.

B. Long Short Term Memory (LSTM)

Since the introduction of LSTM networks [31], they
have become a valuable tool due to their ability to capture
long-term dependencies and mitigate the vanishing gradient
issue. An LSTM unit comprises a memory cell, an input
gate, an output gate, and a forget gate. Memory cell ct saves
the input xt at time t, defined by the input gate. Forget gate
forgets the state of the last moment cell, ct−1. The output



gate ht added a part of the cell ct. The input and output gate
equations are illustrated in the following Equations (1).

it = σ(Wi × [ht−1,xt
] + bi)

ft = σ(Wf × [ht−1,xt
] + bf ) (1)

Wi and Wf represent the weights linked to the input and
forget gates, respectively. ht−1 denotes the last memory cell
output, whereas xt represents the current input. Similarly, bi
and bf represent the bias vectors. Equation (2) is used to assist
in updating the memory cell state.

ct = ft × ct−1 + it × (tanh(Wc × [ht−1,xt
] + bc)) (2)

Wc represents memory cell weight, ct−1 signifies the
preceding memory cell state, and bc denotes the bias vector.
The output ht is calculated using Equation (3).

ot = σ(Wo × [ht−1,xt
] + bo)

ht = σt × tanh(ct) (3)

C. PID (Proportional – Integral – Derivative) Controller

Over 90% of control loops utilize the PID controller,
making it a crucial component of current feedback control
systems [32]. Effectively regulating system behavior across
varied applications, PID control integrates proportional (P),
integral (I), and derivative (D) input. A PID controller uses
adjustable parameters (Kp, KI , KD) to balance accuracy,
stability, and responsiveness by modifying system inputs ac-
cording to the difference between desired and actual outputs.
In response to the amount of the present error, the P adjusts
output proportionately; in contrast, the I collects errors over
time to reduce steady-state errors. Overshoot, nevertheless, is
possible, especially with shorter integral periods. In contrast,
the D is stable-contributing yet noise-prone since it predicts
error changes by looking at its velocity of change. Together,
these parts enhance the system’s performance, making it more
resistant to disruptions and manageable to regulate [33].

III. PROPOSED METHODOLOGY

The proposed architecture aims to safeguard smart home
environments against temperature manipulation attacks, as
depicted in Fig. 1. Firstly, real-world temperature data is
obtained from the IoT Dataset block, detailed in III-D. The
attacker manipulates the dataset using False Data Injectionap-
proach III-A. Then, we employ a Random Forest Classifier
to detect anomalies caused by the attackers. This classifier
is trained on the dataset to identify deviations from normal
temperature patterns. The ensemble learning capabilities of the
Random Forest Classifier allow our system to detect anomalies
faster and more effectively, strengthening the security of smart
home environments.

Subsequently, upon anomaly detection, our system leverages
an LSTM model within the Prediction Module, referenced as
III-B, to forecast temperatures during instances of attack. Dur-
ing the training phase, the LSTM model is trained to learn tem-
poral patterns from the data. Then, during the testing phase,
this trained LSTM model is employed to predict temperature

values at the time indices corresponding to detected anomalies
calculated from the anomaly detection block. These predicted
values serve as estimations of future threshold values, aiding
in anticipating temperature variations induced by the attack.

Finally, to maintain the desired temperature and ensure user
comfort, a PID controller (Controller Module - III-C) utilizes
the predictions generated by the LSTM model as a threshold
temperature. By regulating the HVAC system based on these
values, the PID controller effectively counteracts the effects of
the FDI attack on the temperature sensor data.

A. Anomaly Injection and Classification Module

We train a Random Forest Classifier to detect the anomaly
in the temperature dataset consisting of 1000 instances. These
temperature setpoints, which the system will regulate, reflect
user preferences. However, attackers can maliciously add,
delete, manipulate, or delay the data. In this work, we consider
FDI attacks, a concept first introduced in [7], which compro-
mise data integrity by exploiting sensor vulnerabilities. For
any FDI attack vector, we have equation 4:

za = z + a where z is the clean data and a ∈ R (4)

Fig. 2 shows a modified dataset using FDI attacks. We injected
1000 synthetic points and set the value a to the range 16 ≤ a ≤
45. This range was selected based on the clean data distribution
shown in Fig 3. We then derive the anomaly instances index for
use in the prediction module to find the relative threshold for
the controller. Fig. 4 illustrates the confusion matrix derived
from the anomaly detection classifier. Out of 8112 data points
in the testing dataset, we found 7734 were true positive, 10 to
be genuine negative, 2 to be false positive, and 392 to be false
negative. The classification accuracy of the anomaly detection
and classification module is 0.998, demonstrating the efficacy
of the classifier in precisely categorizing anomalies.

B. Prediction Module

We develop a custom normalization function for our dataset
to preprocess the input temperature data. We then employ an
LSTM module to forecast the temperature for each setpoint in
abnormal cases. Utilizing sequence learning, the LSTM model
analyzes historical patterns to predict future temperatures. The
model is configured with a timestep of 25 recent data points.
We experiment with different layers and varying neuron counts
to achieve optimal performance. Next to the sequence learning
block is a dense layer that facilitates dimensionality modifica-
tions by linking the output to subsequent layers. The output
layer’s neuron number changes depending on the predicted
horizon. We train our model over 100 epochs with a batch
size of 64 using Adam optimizer. To evaluate performance, we
divided our dataset into two parts: 60% for training and 40%
for testing. Table I details the network setup for the proposed
LSTM model.

C. Control Module

We employ a PID controller to model temperature feedback
loops in a smart building. We first define proportional, integral,



Fig. 1. Proposed Architecture of Machine Learning-Based Anomaly Detection for Temperature Setpoint Control

Fig. 2. Portion of Modified Dataset

Fig. 3. Portion of Original Dataset

and derivative gains as the standard PID constants. After
detecting aberrant temperature sensors in the initial stage of the
experiment, we randomly assigned indices to represent each
one. These indices allow for the calculation of setpoint tem-
peratures and the appropriate initialization of PID controllers
for each sensor. The temperature feedback loop is replicated
across multiple iterations, capturing temperature data and
control signals for every sensor. Using PID control to regulate
a smart building’s temperature dynamically allows for exact
tracking and control. It also shows how the PID controller
can be adjusted and used in many situations by employing
random sampling to mimic different sensor circumstances.

D. Dataset Description

The dataset [34] includes temperature readings from IoT
sensors, both indoors and outdoors, collected from July 28,
2018, to December 08, 2018. During the recording period, the
devices encountered intermittent instances of being uninstalled
or shut down, which led to the collection of readings occurring
at irregular intervals. The dataset consists of 97,605 recorded
values. Our research primarily focuses on 20,345 interior
temperature data. Each reading has a unique ID and additional
details such as room number, time of measurement, temper-
ature value, and whether it was taken indoors or outdoors.

Fig. 4. Confusion Matrix for Anomaly detection

TABLE I
PROPOSED LSTM NETWORK ARCHITECTURE

Layer Output Shape Parameter
lstm (LSTM) (None, 25, 100) 40800

lstm 1 (LSTM) (None, 25, 100) 80400
lstm 2 (LSTM) (None, 100) 80400
dense (Dense) (None, 1) 101

Fig. 3 and Fig. 2 show a portion of the original dataset and
modified dataset (false data injection), respectively.

IV. SIMULATION RESULTS

A. Performance Metrics
In this section, we assess the model’s effectiveness using

various performance criteria. Confusion Matrix is a popular
method for assessing the performance of a classification model
on test data with known actual values [35]. A classification
system’s accuracy is the percentage of true positives relative
to the total number of categories, shown in Equation (5).
The variables TP, TN, FP, and FN in the equation represent
true positive, true negative, false positive, and false negative
detections, respectively [36]. We use three standard metrics,
mean square error (MSE), mean absolute error (MAE), and
root mean square error (RMSE), to evaluate our proposed
method’s performance. The MSE metric calculates the average
of the squares of errors between predicted values and actual
values, as shown in equation (7) [37]. The MAE metric
calculates the average of the absolute differences between
predicted and target values, using equation (6) [37]. The
RMSE metric, presented in equation (8), measures the standard
deviation of prediction errors [37].

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(5)
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where y and ŷ represent the true and predicted values of
the indoor temperature, respectively. In Table III, we can see
several performance metrics that show how our suggested
LSTM model works to determine the threshold temperature
for aberrant sensors that are randomly identified.

Fig. 5. Prediction results of Temperature Prediction

Fig. 6. Training and Testing Loss

B. Result Analysis

Table II presents various performance metrics for five
sensors in a smart building. Sensors 1-3 experience fewer
overshoots compared to Sensors 4-5, highlighting how much
each sensor’s temperature surpasses the target setpoint. The
Rise Time indicates the rate at which the temperature reaches
a certain percentage of the setpoint, while the Settling Time
measures the rate at which the temperature stabilizes around
the setpoint. A negative value for the Steady-State Error
indicates that the temperature falls below the setpoint. The
precision of each sensor’s temperature control system over
time is shown by the Integral of Absolute Error (IAE).

The LSTM model’s accuracy in predicting future temper-
atures for accessing the anomaly temperature data indices is
evaluated using three metrics: Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). During the training phase, the model records an MSE
of 0.383, an MAE of 0.364, and an RMSE of 0.619. During
the testing phase, the model shows an improved performance
with an MSE of 0.184, an MAE of 0.302, and an RMSE of
0.429. These results indicate that the LSTM model effectively

TABLE II
PERFORMANCE METRICS FOR DIFFERENT SENSORS IN A BUILDING

Sensor Info PID
Overshoot Steady-State Error IAE

Sensor #328 0.923 0.00018 36.344
Sensor #58 1.106 -7.788e-05 15.0491
Sensor #13 0.057 -4.018e-06 0.776
Sensor #380 0.423 -2.978e-05 5.755
Sensor #141 2.919 -0.0002 39.695

TABLE III
PERFORMANCE METRICS FOR LSTM MODEL

MSE MAE RMSE
Train Test Train Test Train Test
0.383 0.184 0.364 0.302 0.619 0.429

learns temporal patterns in the temperature data, aiding in
the detection of abnormal temperature indices. This ability
to generalize to new data during testing is reflected in lower
error metrics, which signify enhanced predictive accuracy.
The performance metrics for the LSTM model are illustrated
in Table II. Fig. 5 further demonstrates the model’s ability
to accurately represent real-world temperature dynamics by
comparing predicted values with actual temperatures. Fig. 6
shows the loss in both the training and the testing periods,
consistently approaching zero. This pattern indicates that
our model demonstrates remarkable performance by closely
matching its temperature predictions with actual data. Fig. 7
illustrates the temperature monitoring behavior of randomly
selected anomalous sensors on a floor. The set threshold values
serve as benchmarks for these abnormalities, demonstrating
their increasing alignment with the projected thresholds gen-
erated by the LSTM module. This diagram illustrates the auto-
matic adjustment process activated when unusual sensor data
is detected, highlighting the effectiveness of our technique.
Furthermore, Fig. 8 emphasizes the efficiency and resilience
of the system, showing that reducing control input levels
enhances stability around the defined threshold values, thereby
improving overall system performance.

Fig. 7. Temperature Tracking for Randomly Selected Sensors

Fig. 8. Control Signal for Randomly Selected Sensors



V. CONCLUSION

Smart buildings usher in a new age of livability, energy
efficiency, and sustainability with the ubiquitous integration
of IoT sensors, which optimize energy usage and enhance
occupant comfort. Accurate forecasting of temperature and
humidity are essential for maintaining indoor thermal comfort
and optimizing HVAC system operations. Predictive indoor
temperature control strategies utilize historical and real-time
environmental data to predict fluctuations, enabling proac-
tive interventions for efficient climate management. This pa-
per represents an initial step towards incorporating machine
learning-driven anomaly detection into control systems for
optimal indoor climate regulation. It presents a comprehen-
sive anomaly detector-based framework for smart building
applications that combine PID control and LSTM forecasting.
Experimental validation confirms its efficacy in minimizing
temperature fluctuations and enhancing building performance.
By integrating anomaly detection with machine learning and
control approaches, smart buildings can maximize resource
use, mitigate cyber threats, and foster resilient ecosystems.

ACKNOWLEDGMENT
This work is supported by the Commonwealth Cyber Initia-

tive (CCI), an investment in the advancement of cyber R&D,
innovation, and workforce development in Virginia. For more
information about CCI, visit cyberinitiative.org.

REFERENCES

[1] P. Ferreira, A. Ruano, S. Silva, and E. Conceicao, “Neural networks
based predictive control for thermal comfort and energy savings in public
buildings,” Energy and buildings, vol. 55, pp. 238–251, 2012.

[2] E. Dahlberg, M. Mineur, L. Shoravi, and H. Swartling, “Replacing
setpoint control with machine learning: Model predictive control using
artificial neural networks,” 2020.

[3] K. Schwab, The fourth industrial revolution. Crown Currency, 2017.
[4] M. Zaman, M. Al Islam, A. Tantawy, C. J. Fung, and S. Abdelwahed,

“Adaptive control for smart water distribution systems,” in 2021 IEEE
International Smart Cities Conference (ISC2), pp. 1–6, IEEE, 2021.

[5] S. Robinson, “Smart home attacks are a reality, even as the smart home
market soars,” Last accessed, vol. 27, 2019.

[6] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
et al., “Understanding the mirai botnet,” in 26th USENIX security
symposium (USENIX Security 17), pp. 1093–1110, 2017.

[7] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” ACM Transactions on Informa-
tion and System Security (TISSEC), vol. 14, no. 1, pp. 1–33, 2011.

[8] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming,
“Ad-iot: Anomaly detection of iot cyberattacks in smart city using
machine learning,” in IEEE 9th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 0305–0310, IEEE, 2019.

[9] J. Novacic and K. Tokhi, “Implementation of anomaly detection on a
time-series temperature data set,” 2019.

[10] P. Danassis, K. Siozios, C. Korkas, D. Soudris, and E. Kosmatopoulos,
“A low-complexity control mechanism targeting smart thermostats,”
Energy and Buildings, vol. 139, pp. 340–350, 2017.

[11] Y. Liu, Z. Pang, M. Karlsson, and S. Gong, “Anomaly detection based
on machine learning in iot-based vertical plant wall for indoor climate
control,” Building and Environment, vol. 183, p. 107212, 2020.

[12] M. A. Johnson and M. H. Moradi, PID control. Springer, 2005.
[13] M. Novák, F. Jakab, and L. Lain, “Anomaly detection in user daily

patterns in smart-home environment,” J. Sel. Areas Health Inform, vol. 3,
no. 6, pp. 1–11, 2013.

[14] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection for smart home based on user behavior,” in IEEE international
conference on consumer electronics (ICCE), pp. 1–6, IEEE, 2019.

[15] S. Tang, Z. Gu, Q. Yang, and S. Fu, “Smart home iot anomaly detection
based on ensemble model learning from heterogeneous data,” in IEEE
International Conference on Big Data, pp. 4185–4190, IEEE, 2019.

[16] V. Jakkula and D. Cook, “Detecting anomalous sensor events in smart
home data for enhancing the living experience,” in Workshops at the
twenty-fifth AAAI conference on artificial intelligence, 2011.

[17] S. Ramapatruni, S. N. Narayanan, S. Mittal, A. Joshi, and K. Joshi,
“Anomaly detection models for smart home security,” in IEEE 5th Intl
Conference on Big Data Security on Cloud, pp. 19–24, IEEE, 2019.

[18] A. E. Ruano, E. M. Crispim, E. Z. Conceiçao, and M. M. J. Lúcio,
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