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Abstract—The increasing number of 100% inverter-based
microgrids is introducing new challenges in their control and
cybersecurity. Previous work has studied the cyber vulnerabilities
of microgrids; however, very few work has studied methods
to mitigate and detect cyberattacks in a 100% inverter-based
microgrid. Attackers can utilize communication-based devices
in a microgrid to launch false data injection (FDI) attacks
and cause voltage and frequency instability. This paper studies
the effects of FDI attacks on the real and reactive power set
points of inverter-based resources (IBR) in a 100% inverter-
based microgrid. This work co-simulates a power system using
PSCAD and a communication system using Python to study FDI
attacks. The communication system is modeled as a first in first
out (FIFO) queue model. A long short-term memory (LSTM)-
based method is used to mitigate and detect ramp and bias FDI
attacks. The proposed strategy is tested on a microgrid with four
IBRs subject to different FDI attacks.

Index Terms—Cyberattack, detection, false data injection
(FDI), inverter-based resources (IBR), long short-term memory
(LSTM), microgrid, photovoltaic (PV).

I. INTRODUCTION

The U.S. has the goal of reaching 100% clean electricity

by 2035 [1]. As a result, more photovoltaic (PV) and wind

generation are being installed in the grid. PV, type III wind tur-

bines, and type IV wind turbines are connected to the grid via

an inverter. Therefore, the number of installed 100% inverter-

based microgrids is increasing, introducing new challenges in

control and cybersecurity. It is necessary to study the cyberse-

curity of microgrids since attackers can utilize communication-

based devices installed in the microgrid to launch cyberattacks.

These devices enable sending and receiving measurements and

commands. Remote terminal units (RTU) send voltage and

current measurements to the control center, and operators send

control commands such as generation set points and opening

breakers to RTUs.

Several successful cyberattacks have been reported. In 2015,

a successful cyberattack on the Ukrainian power system left

225,000 Ukrainians without electricity [2]. The U.S. Depart-
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ment of Energy has reported 36 disturbances to the power

system from cyber events or vandalism in the first three months

of 2023 [3]. As a result, numerous research has been conducted

to study the effects of cyberattacks on the grid and ways

to mitigate and detect them. Moreover, attackers use false

data injection (FDI) and denial of service (DoS) attacks. In

FDI attacks, attackers falsify the data and commands being

sent to RTUs to cause disturbances in the power system. In

DoS attacks, attackers stop data from being sent to the RTU.

Attackers can launch FDI on solar PV units and SCADA

systems of a wind farm [4], [5]. Both FDI and DoS attacks

can be detected and mitigated.

Previous work has studied the cybersecurity of microgrids;

however, very few have studied methods to mitigate and detect

cyberattacks in 100% inverter-based microgrids. Reference [6]

uses a long short-term memory (LSTM)-based system to

monitor the cybersecurity of microgrid networks; however,

it only detects the cyberattack. Machine learning–based and

observer-based methods can be used to mitigate and detect FDI

attacks. Luenberger and augmented Kalman filter can estimate

the signal value under FDI attacks [7]. An artificial neural

network (ANN) detects and mitigates DoS and FDI on the

Volt-VAr control system [8]. ANN detects and mitigates FDI

on a DC microgrid inverter control [9]. In [10], LSTM detects

power measurement anomalies with high accuracy and esti-

mates them. Stacked autoencoders with LSTM architectures

can detect electricity theft [11]. An LSTM network detects

cyberattacks on a PV farm [12].

This work simulates a 100% inverter-based microgrid,

where it has four inverter-based resources (IBR). Two of them

are in the grid-following mode, and the rest are in the grid-

forming mode. IBR acts as a current source in the grid-

following mode. IBR acts as a voltage source where Q-V
droop control helps to keep the voltage within the nominal

range, and P -f droop control helps to keep the frequency

within the nominal range in the grid-forming mode [13]. A

certain number of inverters are set to grid-forming mode to

control the frequency and voltage of the 100% inverter-based

microgrid. A co-simulation platform is needed to study the

cybersecurity of a grid. This work studies FDI attacks on a

100% inverter-based microgrid and proposes a detection and

mitigation method using LSTM. The LSTM-based method

is tested using the co-simulation platform for various FDI
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Fig. 1. Single-line diagram of an IBR connected to the grid through an RL
filter.

attacks, which provides the following advantages:

• The LSTM-based method detects and mitigates both ramp

and bias FDI attacks.

• The LSTM-based method prevents voltage instability.

• The LSTM-based method uses data packets to detect a

cyberattack.

• The co-simulation platform enables studying FDI attacks

on the power set points of an IBR in a 100% inverter-

based microgrid.

Inverter control is discussed in the next section. Section III

discusses the implementation of the cyber-physical system.

First, the physical layer is described; then, the cyber layer and

the co-simulation platform are discussed. Section IV describes

the detection and mitigation method. Section V shows the

simulation results, and Section VI concludes the paper.

II. INVERTER CONTROL

This section introduces inverter controls.

A. Grid-Following Mode
This subsection describes the IBR model in grid-following

mode, where it operates as a voltage-sourced converter. A

single-line diagram of an IBR connected to the grid through

an RL filter is shown in Fig. 1. The phase angle of the voltage

is estimated using a phase-locked loop (PLL), which is used

in abc-frame to dq-frame transformation. The KVL equation

in dq-frame is shown in the following [14]:

did
dt

= −Rf

Lf
it,d +

1

Lf
(vt,d + ωLf it,q − vs,d),

diq
dt

= −Rf

Lf
it,q +

1

Lf
(vt,q − ωLf it,d − vs,q),

(1)

where it is the IBR output currents, Vt is the IBR terminal

voltage, and Vs is the voltage after the RL filter. Auxiliary

variables are defined and shown in the following:

Ud =
1

Lf
(vt,d + ωLf it,q − vs,d),

Uq =
1

Lf
(vt,q − ωLf it,d − vs,q).

(2)

Substituting (2) in (1) results is (3):

did
dt

= −Rf

Lf
it,d + Ud,

diq
dt

= −Rf

Lf
it,q + Uq,

(3)

where d- and q-axes are decoupled as shown in (3), and a PI

controller can be used to control the system. Fig. 2 shows the

conventional decoupled current control loop [14].
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Fig. 2. Decoupled current control for d- and q-axes.
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Fig. 3. Droop control for a grid-forming IBR: (a) Q-V (b) P -f .

B. Grid-Forming Mode
Droop control helps maintain the frequency and voltage of

the grid within their nominal values in the grid-forming mode.

Fig. 3(a) shows the Q-V droop control, which can change the

reactive power of an IBR. If the grid voltage deviates from

1 pu, the reactive power will change to keep the grid voltage

within the nominal range. Fig. 3(b) shows the P -f droop

control, which can change the real power of an IBR. If the grid

frequency deviates from 1 pu, the real power will change to

keep the grid frequency within the nominal range [13]. Fig. 3

shows PI controllers in P -f and Q-V droop controls.

III. CYBER-PHYSICAL SYSTEM

This section describes the physical layer, the cyber layer,

and the co-simulation platform.

A. Physical Layer
A physical layer represents a power system. This work uses

PSCAD to simulate the physical layer since it is the de facto

industry standard tool for IBR modeling and simulation. Fig. 4

shows the single-line diagram of a microgrid with four IBRs,

where the base power and voltage are 1 MVA and 12.47 kV.

IBRs are connected to the grid via a transformer, where the

primary and secondary voltages are 480 V and 12.47 kV. The

DC bus voltage of the IBR is 1.2 kV, the output voltage of

the IBR is 480 V, and the IBR maximum output power is

1 MVA. The IBR filter resistance is 2 mΩ, and the IBR filter

reactance is 30 μH. IBR 1 and IBR 2 are grid-forming, and
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Fig. 4. Single-line diagram of the 100% inverter-based microgrid.

IBR 3 and IBR 4 are grid-following. For the grid-following

mode, gains of the PI block are kP = 1.5, kI = 0.003. For

the grid-forming mode, gains of the PI block in P -f droop

control are kP = 0.5, kI = 0.002, and in Q-V droop control

are kP = 0.5, kI = 0.003.

Line A connects bus 1 and bus 2, line B connects bus 2

and bus 3, and line C connects bus 3 and bus 4 together.

Line A resistance and inductance are 1.4 Ω and 5.4 mH. Line

B resistance and inductance are 2.2 Ω and 8.4 mH. Line C
resistance and inductance are 0.6 Ω and 2.5 mH. A three-

phase load is connected to each bus where its real power is

0.3 pu, and its reactive power is 0.03 pu. A dispatchable load

is connected to bus 2, where its real power is 0.3 pu, and its

reactive power is 0.03 pu.

B. Cyber Layer

A cyber layer represents a communication layer and can

be simulated using Python. Communication links are modeled

as first in first out (FIFO) queues. Fig. 5 shows the cyber

layer, where each IBR has an RTU that sends the root mean

square (RMS) value of the terminal voltage and current, the

IBR real power, and the IBR reactive power to the control

center. The control center receives measurements and sends

reactive power set points to the IBR RTU; however, attackers

can falsify the set points being sent to the IBR RTU. Fig. 5

shows the implementation of FDI attacks in the cyber layer,

where the FDI block falsifies the set points received from the

control center. A detection algorithm block is added between

the FDI attacks block and the IBR RTU to enable detecting

and mitigating the FDI attacks. Each inverter has a detection

algorithm block, which is described in Section IV.

C. Co-Simulation Platform

In a cyber-physical system, a cyber and a physical system

are simulated simultaneously, enabling the study of the cyber

vulnerability of the grid. In this work, PSCAD simulates

the physical layer. PSCAD can exchange data with other

software, [15] studies PSCAD interface with MATLAB. In

this work, the Python co-simulation block in PSCAD v5 is

used to enable the exchange of data between the PSCAD and

Python code. The cyber layer is added to the Python code.

Fig. 6 shows how data is exchanged between the physical and

the cyber layer.

P
Q

P
Q

P
Q

P
Q

V

P Q P Q

I
P Q

V I
P Q

Fig. 5. Cyber layer of the microgrid.

Fig. 6. Data exchange path of the co-simulation platform.

tanh
ht-1

tanh

Ct

ht

ft it Ct Ot

ht

xt

tanh
ht-1

tanh

Ct

ht

ft it Ct Ot

ht

xt

Ct-1

Fig. 7. Gates mechanism of an LSTM unit.

IV. CYBERATTACK DETECTION AND MITIGATION

This section introduces LSTM and then describes cyberat-

tack detection and mitigation method.

A. Long Short-Term Memory
LSTM is widely used in time series prediction. LSTM uses

gating mechanisms. Fig. 7 shows a unit of LSTM where Ct−1

represents the previous cell states unit, xt considers the input

current signal, ht is the current LSTM unit output, ht−1 is

the previous LSTM unit output, it is the input gate, ft is the

forget gate, and Ot represents the output gate [16].

LSTM equations are shown as follows:

ft = σ(Wf [ht−1, xt] + bf ),

it = σ(Wi [ht−1, xt] + bi),

C̃t = tanh (WC [ht−1, xt] + bC),

Ct = ft Ct−1 + it C̃t

Ot = σ(WO [ht−1, xt] + bO),

ht = Ot tanh (Ct),

σx =
1

1 + e−x
,

(4)

where the forget gate selects the portion of data that will be

used in the next steps. Once the input data decides which

information should be added to the input state, the output
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Fig. 8. Inputs and outputs of the LSTM block.

gate calculates the next hidden state [16]. The LSTM gate

coefficients are set during the training process. LSTM uses a

dataset, and the LSTM gate coefficients are updated at each

training epoch to increase the LSTM prediction accuracy.

B. Proposed Method
Each IBR has an LSTM block to mitigate and detect FDI

attacks on the real and reactive power set points. The RMS

value of the current and voltage, the real power output of the

IBR, the reactive power output of the IBR, the real power set

point of the IBR, and the reactive power set point of the IBR

are the LSTM block inputs as shown in Fig. 8. The estimated

real and reactive power set points are the LSTM block outputs,

as shown in Fig. 8. Each LSTM unit uses 6 inputs, which

helps keep the mitigation accuracy high even if one of the

measurements is noisy due to sensor malfunction. The LSTM

block estimates the power set points, and if the difference

between the estimated and received set points is more than a

threshold, the estimated set points are sent to the IBR FRTU

instead of the received set points. The threshold is set based

on the accuracy of LSTM under FDI attacks, and it is set to

7% in this work since the accuracy of the trained LSTM under

various ramp and bias attacks is 94.1%.

C. LSTM Training and Parameters
The microgrid is simulated in PSCAD. For LSTM training,

a data set is generated by simulating the ramp and bias attacks

on the real and reactive power set points that cause voltage

and frequency violations. The voltage and frequency violations

happen if the bus voltage increases over 1.05 pu or decreases

below 0.95 pu, and the frequency increases over 62 Hz or

decreases below 58 Hz. 70% of the dataset is used for training,

and the rest is used for testing the algorithm.

The LSTM is trained using the Keras library in Python

3.8, and its hyperparameters are set using trial and error. The

LSTM has 3 hidden layers, where each hidden layer has 6

neurons the output of each layer is the input of the next hidden

layer. LSTM algorithm is trained for 100 epochs, the activation

function is tanh, the optimizer is Adam, the optimizer learning

rate is 0.001, and the loss function is MSE [17].

V. SIMULATION RESULTS

Attackers use positive bias attacks, negative bias attacks,

positive ramp attacks, and negative ramp attacks on the reac-

tive power set point of IBR 3 to cause overvoltage or under-

voltage in the microgrid. The value of the bias and ramp FDI

attacks are selected in a way that the voltage increases over

1.1 pu or decreases below 0.9 pu. Four cases are simulated.

In all cases, the reactive power of IBR 3 is 0.03 pu before

applying FDI attacks.

Fig. 9. Simulation results for the positive bias attack: (a) IBR 3 reactive
power set point, (b) voltage of bus 3.

Fig. 10. Simulation results for the negative bias attack: (a) IBR 3 reactive
power set point, (b) voltage of bus 3.

A. Case 1: Positive Bias Cyberattacks
Attackers launch an FDI cyberattack at t = 1 s and

increase the reactive power set point of IBR 3 to 1 pu.

Fig. 9(a) shows the reactive power set point under cyberattacks

with and without the mitigation method and under normal

conditions. Fig. 9(b) shows bus 3 voltage, where it increases

from 1 pu to 1.11 pu when no detection and mitigation method

is implemented in the microgrid. However, using the proposed

method, the grid voltage does not change.

B. Case 2: Negative Bias Cyberattacks
Attackers launch an FDI cyberattack at t = 1 s and decrease

the reactive power set point of IBR 3 to −1 pu. Fig. 10(a)

shows the reactive power set point under cyberattacks with and

without the mitigation method and under normal conditions.

Fig. 10(b) shows bus 3 voltage, where it decreases from

1 pu to 0.88 pu when no detection and mitigation method is

implemented in the microgrid. However, using the proposed

method, the grid voltage does not change.

C. Case 3: Positive Ramp Cyberattacks
Attackers launch an FDI cyberattack at t = 1 s and

increase the reactive power set point of IBR 3 to 1 pu using

a ramp. Fig. 11(a) shows the reactive power set point under

cyberattacks with and without the mitigation method and under

normal conditions. Fig. 11(b) shows bus 3 voltage, where
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Fig. 11. Simulation results for the positive ramp attack: (a) IBR 3 reactive
power set point, (b) voltage of bus 3.

Fig. 12. Simulation results for the negative ramp attack: (a) IBR 3 reactive
power set point, (b) voltage of bus 3.

it increases from 1 pu to 1.11 pu when no detection and

mitigation method is implemented in the microgrid. However,

using the proposed method, the grid voltage does not change.

D. Case 4: Negative Ramp Cyberattacks
Attackers launch an FDI cyberattack at t = 1 s and decrease

the reactive power set point of IBR 3 to −1 pu using a ramp.

Fig. 12(a) shows the reactive power set point with and without

mitigation method and under normal conditions. Fig. 12(b)

shows bus 3 voltage, where it decreases from 1 pu to 0.88 pu

when no detection and mitigation method is implemented in

the microgrid. However, using the proposed method, the grid

voltage does not change.

VI. CONCLUSION

This work studies FDI attacks on the real and reactive

power set points of IBRs in a 100% inverter-based microgrid.

Ramp and bias FDI attacks on IBR set points can cause

voltage instability. This work uses an LSTM-based method

to mitigate and detect FDI attacks in a 100% inverter-based

microgrid with four IBRs. Each IBR has an LSTM block,

which uses the RMS current, RMS voltage, real and reactive

power output, and real and reactive power set points of the

IBR to estimate the real and reactive power set points of

the IBR. If the difference between the estimated and the

received set points is larger than the threshold, the estimated

set points will be sent instead of the received set points to

the IBR RTU. The microgrid is tested under four FDI attacks.

A successful FDI attack changes the grid voltage by more

than 0.11 pu; however, the grid voltage does not change under

cyberattacks using the proposed detection method. Moreover,

the implemented system in this work facilitates studying other

types of cyberattacks such as DoS, delay, and replay attacks.
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