
Strategic Resilience Evaluation of Neural
Networks within Autonomous Vehicle Software

Anna Schmedding1, Philip Schowitz2, Xugui Zhou3, Yiyang Lu1, Lishan
Yang4, Homa Alemzadeh3, Evgenia Smirni1

1 William & Mary, USA, {akschmedding,ylu21,exsmir}@wm.edu
2 University of British Columbia, Canada, philipns@cs.ubc.ca

3 University of Virginia, USA, {xz6cz,ha4d}@virginia.edu
4 George Mason University, USA, lyang28@gmu.edu

Abstract. Self-driving technology has become increasingly advanced
over the past decade due to the rapid development of deep neural net-
works (DNNs). In this paper, we evaluate the effects of transient faults in
DNNs and present a methodology to efficiently locate critical fault sites
in DNNs deployed within two cases of autonomous vehicle (AV) agents:
Learning by Cheating (LBC) and OpenPilot. We locate the DNN fault
sites using a modified Taylor criterion and strategically inject faults that
can affect the functioning of AVs in different road and weather scenarios.
Our fault injection methodology identifies corner cases of DNN vulnera-
bilities that can cause hazards and accidents and therefore dramatically
affect AV safety. Additionally, we evaluate mitigation mechanisms of such
vulnerabilities for both AV agents and discuss the insights of this study.

Keywords: Autonomous Vehicles, Fault Tolerance, DNNs

1 Introduction

Autonomous vehicles (AVs) are real-world safety-critical systems of increasing
importance. With the growing complexity of software and use of deep neural
networks (DNNs) for perception and control in AVs, many factors can threaten
their safe operation, such as software bugs [1] and transient faults in hardware [2],
leading to mis-classifications by DNNs and potential safety hazards.

Transient faults (i.e., soft errors) originating from cosmic radiation [3] or from
operating under low voltage [4] have been shown to threaten the functionality of
DNN hardware and software [5]. Transient faults in the main memory (DRAM)
can manifest as single- or multi-bit flips, specifically in neurons or weights of
DNN models [5] and may cause silent data corruption (SDC) where the output
is faulty despite a seemingly “correct” execution. Since DRAM is used in AVs5,
this safety-critical application inherits the reliability challenges of DRAM faults.
Transient faults have already contributed to vehicle crashes [7].

5 For example, the NVIDIA Jetson AGX Orin Series, which is used by NVIDIA
DRIVE, uses 32GB or 64GB of DRAM [6]

LBC Supercombo
CONV Layers 40 70

Weights 21,268,928 5,811,616
Single-Bit Fault Sites 680,605,696 185,971,712
Double-Bit Fault Sites 21,098,776,576 5,765,123,072
Triple-Bit Fault Sites 632,963,297,280 172,953,692,160

Table 1: Fault Space for OpenPilot Supercombo and LBC.

Locating critical faults that cause safety hazards or accidents is necessary in
such safety-critical systems. A major challenge here is the vast fault site space,
often in the order of billions (see Table 1) which would require thousands of years
to exhaustively analyze. This makes identifying corner cases where faults may
affect the functional safety of a self-driving vehicle [8] similar to searching for
a needle in a haystack. Within the AV ecosystem, the classical statistical fault
injection [9], cannot discover the critical corner cases that could lead to safety
violations. Past works focus on specific DNN tasks (e.g., image classification)
and examine DNN resilience without the context of the entire AV system [10,
11]. Recent AV resilience assessment works have focused on input, models, or
outputs [12–14], but not on its DNN components that are at the core of AV
operation. Our aim is to develop a method to efficiently locate these critical fault
sites in the DNN components of AVs. We evaluate these fault sites by injecting
transient faults in DNN weights and determining whether their effects propagate
to other AV components and eventually result in hazards or accidents.

We present a strategic fault injection method, called Taylor-Guided Fault In-
jection (TGFI), that identifies and targets the DNN weights that are of high im-
portance to reliable inference. This is done using a modified Taylor criterion [15]
which ranks all the DNN weights with respect to their relative importance to
inference accuracy. We inject faults in those important weights and show that
our strategic fault injection method can efficiently discover safety-critical vulner-
abilities in AVs. We specifically focus on locating critical fault sites within two
AV systems: (i) Learning-by-Cheating (LBC), a fully autonomous self-driving
agent [16] that is widely used in academic studies [2], and (ii) OpenPilot, a
popular driver-assistance system that is used in over 250 existing car models
on the road [17]. By using two systems with different levels of autonomy, we
demonstrate the ability of TGFI to generalize to different AV DNNs.

We also characterize the effect of mitigation in the cases where these criti-
cal faults occur. For LBC, we consider a state-of-the-art fault tolerance method
based on neuron value range restriction for CNNs, called Ranger [11]. For Open-
Pilot, we examine the existing system safety checks which return control to the
human driver. Additionally, we examine the effects of considering contextual fac-
tors such as the location of faults and environmental conditions that impact the
input in order to offer insights into the practical reliability challenges of deploy-
ing AVs on the road. Both mitigation methods show improvement in resilience,
while TGFI is still able to find critical corner cases.

2

2 Autonomous Driving Frameworks

The Society of Automotive Engineers (SAE) defines 6 levels of driving automa-
tion for AVs, from Level 0 (L0, no driving automation) to Level 5 (L5, full driving
automation) [18]. L0 to L2 assume that there is a human in the loop who controls
the automotive environment by supervising or taking over the autonomous fea-
tures. For higher levels, the car autonomously controls the driving environment
without human involvement. With DNN models incorporated, an L4 AV may use
end-to-end ML models for perception and planning without human intervention,
while L0-L2 levels use DNNs for driver assistance.

2.1 L4 System: LBC

Learning by Cheating (LBC) is a pretrained end-to-end agent for L4 autonomous
driving and is widely used in research studies [2,19,20]. Fig. 1a shows the model
structure of LBC, which is built on a ResNet34 [21] backbone to process input
images from a front-facing camera on the vehicle. The model takes two additional
inputs: vehicle speed and a high-level command vector generated by the planner,
instructing the vehicle to follow the lane, turn left/right or go straight at an
intersection. After the ResNet34 backbone, the model splits into four parallel
branches that each corresponds to a high-level command. The final output is a
set of five waypoints of the AV path (see Fig. 1b), which are passed to a low-level
controller that produces the steering, throttle, and braking commands.

ResNet34

Input Image

Velocity

Command Vector

3 ConvTranspose

Layers

5 Waypoints

Left Turn Branch

1 CONV Layer

Right Turn Branch

1 CONV Layer

Go Straight Branch

1 CONV Layer

Follow Lane Branch

1 CONV Layer

Branch Selection

CONV

CONV

…
36

Convolution

Layers

(a) LBC model structure.

(b) LBC screenshot. Waypoints are red dots.

Learning By Cheating
Fully Autonomous
Framework (L4)

Learning By
Cheating Model

CARLA
Urban Driving Simulator

Camera & Vehicle
State Interface

Planner
PID

Controllers

(c) LBC integration in the Carla simulator.

Fig. 1: LBC framework.

2.2 L2 System: OpenPilot

OpenPilot is an L2 Autonomous Driving Assistance System (ADAS) that sup-
ports more than 250 popular makes and models of cars [17]. A high-level overview
of OpenPilot is shown in Fig. 2c. Car sensor data such as images and vehicle state
information are passed into the Supercombo model. The output of Supercombo
is sent to the planners. The PID Controller uses the results from the planner
to decide actuator actions. The generated commands (e.g., brake) are passed
through the Panda CAN interface to the actuators to perform the commands.

3

EfficientNet-B2

2 Input Images

Desire State

Recurrent

State

Traffic

Convention

3 GEMM
Layers

Meta

Info

Desire

Prediction
Pose

Plan
Lead Vehicle

Probabilities

Lane Line

Probabilities

Desire

State

Lane

Line 1

Recurrent

State

Lead

Vehicle

1 GEMM
Layer

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

1 GEMM
Layer

Lane

Line 4

4 GEMM
Layers

4 GEMM
Layers

4 GEMM
Layers

Road

Edge 1

Road

Edge 2

…

CONV

CONV

…
70

Convolution

Layers

(a) OpenPilot Supercombo model structure.

(b) OpenPilot screenshot.

OpenPilot (L2)

Actual Car

Actuators
Car

Sensors

CARLA

Urban Driving

Simulator

Message Communication (Cereal, ZMQ/msgq)

Camera

Interface

Supercombo

Sensor

Fusion

Longitudinal Planner

Lateral Planner
PID

Controller

Panda CAN Interface

Control Thread

(c) OpenPilot Overview.

Fig. 2: OpenPilot framework.
The Supercombo model is at the core of the perception module and provides

fifteen output fields. As shown in Fig. 2a, Supercombo utilizes an EfficientNet-
B2 [22] base CNN for processing the incoming images from the car sensors. Then
it uses additional inputs of the traffic convention, desire state, and recurrent state
to incorporate the state of the vehicle and environment. Once all inputs have
been tied in, Supercombo branches into separate general matrix multiplication
(GEMM) computations to generate the plan, lanelines, laneline probabilities,
road edges, lead vehicles, lead probabilities, desire state, meta information, ve-
hicle pose, and recurrent state. Fig. 2b shows an example screenshot.

2.3 Driving Simulator: CARLA

CARLA is an open-source simulator for autonomous driving research, design,
and testing [23]. It provides a realistic urban environment for a vehicle to nav-
igate with features such as variable road and weather conditions. CARLA pro-
vides a wealth of data at each simulation timestamp including whether a colli-
sion, lane invasion, or red light violation has occurred. CARLA is integrated to
Openpilot and LBC, see Fig. 2c and Fig. 1c, respectively.

3 Methodology

Fault Model. We use fault injection in a single 32-bit floating point weight of
the DNN to simulate commonly occurring transient faults in DRAM (Dynamic
Random Access Memory). DNN weights typically reside in DRAM. A fault site
in a neural network weight is defined by the weight id and the bit position(s) of
the weight to be flipped. The size of the fault site space for single-, double-, and
triple-bit faults for OpenPilot Supercombo and LBC is tremendous, see Table 1
and prevents its exhaustive exploration.

For the majority of the analysis (Sections 4 and 5) we focus on double-bit
flips that are detectable but not correctable by ECC. This is consistent with
other reliability studies [11, 24] and also consistent with DRAM faults in the

4

wild [25]. For a broader view of the effect of bit flips, we also do experiments
with single-bit flip (detectable and correctable) and triple-bit flips (undetectable,
their safety implications are similar to double-bit ones, see Section 6).
Fault Injection Method. Fault injection is implemented as a two-stage pro-
cess: Preparation and Injection. In the Preparation stage, before the actual sim-
ulation run, we load the (correct) neural network and select an injection site.
Portions of the network where faults may be injected are denoted by a lightning
bolt in Fig. 1a for LBC and Fig. 2a for OpenPilot Supercombo. We corrupt a
weight tensor of the neural network by altering the values of an individual weight
(depending on the type of experiment, we induce one single-bit, one double-bit,
or one triple-bit fault), and save the corrupted tensor. 6 In the Injection stage,
the corrupted model generated by the fault injector is used by the AV control
software while performing the driving task. The corrupted Pytorch or ONNX
files are loaded at the beginning of each LBC or OpenPilot experiment.
Fault Injection Outcomes. Throughout the simulation, we focus on events
that indicate abnormal behavior. A lane invasion occurs when the vehicle crosses
into a neighboring lane erroneously. Since a lane invasion can occur when the
car barely crosses the lane line, a lane invasion alone is not a hazard. We define
a hazard to be one of the following situations:
H1: The vehicle violates safe following-distance constraints with the lead vehicle:
Relative Distance / Speed ⩽ tsafe and Speed > Lead Speed .
H2: The vehicle drives out of lane beyond a threshold (e.g., 0.1 meter) while
speed is higher than β, these are predetermined values given by the driving
scenario.

We record all hazards that occur within the experiment as well as their time
stamps. These hazards can lead to the following accidents:
A1: Collision with the lead vehicle.
A2: Collision with road-side objects or other vehicles in the neighboring lane.

An accident terminates the simulation, at which point the time stamp and
the nature of the accident are recorded. The simulation also terminates if the
vehicle successfully reaches its goal location. These definitions are based on the
STPA [28] hazard analysis method, which has been utilized in other studies [12,
29]. The hazards considered here are indicative of failures of lane keep assist
(LKA) and adaptive cruise control (ACC), two main functionalities of L2 AVs.

3.1 Vulnerable Weights: Taylor Guided Fault Injection (TGFI)

In a fault space as vast as the one reported on Table 1, the odds that the standard
practice of 1,000 random fault injections [30] capture rare corner cases that result

6 Once the weight is altered, the modified model is written to a file in the necessary
format (ONNX [26] or PyTorch [27], for OpenPilot and LBC, respectively). To cor-
rupt Pytorch models, we load the model, alter the state dictionary associated with
it and then save the new faulty model. For ONNX models, we read the model file
as bytes, locate the plain text layer ID, and modify the bits corresponding to the
target weight in the binary data.

5

0 20 40 60
Layer (OpenPilot Supercombo)

100

101

102

103

104

105

Nu
m

be
r o

f W
ei

gh
ts

 (L
og

 S
ca

le
)

Top 1% (Most Critical)
Top 500 (Most Critical)
Top 50 (Most Critical)

0 10 20 30
Layer (LBC)

100

101

102

103

104

105

106

Nu
m

be
r o

f W
ei

gh
ts

 (L
og

-S
ca

le
)

Top 1% (Most Critical)
Top 500 (Most Critical)
Top 50 (Most Critical)

Fig. 3: Locations of top 50, top 500, and top 1% of important weights in OpenPilot
Supercombo (left) and LBC (right).

in catastrophic driving scenarios are low. Since our target is the identification
of the aforementioned corner cases, we rank the importance of the weights in
the neural network using a modified Taylor criterion [15] which estimates the
first-order Taylor expansion of the contribution of each weight to the accuracy
of the neural network. The more a weight contributes to the accuracy of the
network, the more critical it is and the more it can affect accuracy if a fault
occurs there. We relatively rank all weights in the two target models using the
importance scores generated by the Taylor criterion [15]. The importance of a
weight using this criterion can be estimated using the following equation:

I(1)m (W) = (gmwm)2, (1)

where I is the importance, W is the set of network parameters, gm are elements
of the gradient, and wm are the weight values.

We use the Comma2k19 data set [31] of real-world driving footage as in-
put to OpenPilot Supercombo and LBC, and compute the importance of their
weights [15]. Figure 3 illustrates the location (layer, x-axis) and number (y-axis
logscale) of the most critical weights for OpenPilot Supercombo and LBC. We
make the following observations: 1) critical weights may be located in any layer
and 2) the few most critical weights are concentrated in the earlier layers of both
models. We perform fault injection experiments on the most critical weights as
guided by Equation 1, called Taylor-Guided Fault Injection (TGFI).

3.2 Experimental Campaigns

Every distinct fault site uses the same map for the AV to traverse, the same
starting location of the car(s) in the simulator, the same goal location, and the
same random seed, initial velocity, and weather. The fault sites are selected
according to the fault injection (FI) campaign: 1) Random: The weight where
the double bit flip occurs is chosen using a uniform distribution [30]: we select
1,000 random fault sites to obtain results with 95% confidence intervals and ±3%
error margins. 2) TGFI-top500: We select the top 500 most critical weights.
3) TGFI-top50: We select the top 50 most critical weights.

6

0 2 4 6 8 10
Time to Lane Invasion (seconds)

0.0

0.1

0.2

CD
F

0 2 4 6 8 10
Time to Hazard (seconds)

0.00

0.05

0.10

0.15

0.20

CD
F

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Golden Random TGFI-top500 TGFI-top50

Fig. 4: LBC time to lane invasion and time to hazard. No time to driver intervention
because of L4 autonomy. Note that CDFs do not reach 1.0 since a portion of the
experiments do not experience a lane invasion or hazard.

4 Resilience Evaluation

Following the methodology laid out in Section 3, we perform three FI campaigns
for LBC and OpenPilot. These FI campaigns highlight different methods for
selecting the target weight for fault injection (i.e., Random FI, TGFI-top500,
TGFI-top50) using a two-bit fault model. We perform golden runs (i.e., fault-
free) to capture normal behavior. The driving scenario is on a curved road in
cloudy weather, which represents ideal driving conditions (i.e., good visibility
with no glare). Variations of experimental setup are explored in Section 6.

4.1 Resilience of L4 LBC

Lane invasions are the least severe violation, since not every lane invasion leads to
a hazard. Only 1% of experiments have lane invasions in golden runs, indicating
that these are rare in fault-free cases. The time to lane invasion is shown in
Fig. 4(a). Across all three fault injection campaigns, the lane invasion tends to
occur early in the simulation. Table 2 shows the percentage: TGFI experiments
double the percentage of lane invasions comparing to the random FI experiments.

ADS Fault-Site Selection H1 H2 A1 A2 Lane Inv. Driver Int.
Golden run N/A 0% N/A 0% 1% N/A

L4 (LBC) Random FI N/A 5.9% N/A 5.9% 6% N/A
TGFI-top500 N/A 12% N/A 12% 12% N/A
TGFI-top50 N/A 14% N/A 14% 14% N/A
Golden run 0% 0% 0% 0% 10% 0%

L2 (OpenPilot Random FI 2.0% 0.6% 0% 0.1% 23.4% 21.4%
Supercombo) TGFI-top500 3.3% 8.8% 0.1% 0.2% 29.62% 21.0%

TGFI-top50 7.9% 16.3% 0.2% 0.3% 62.5% 18.3%
Table 2: Percentage of various events. There is no front vehicle in LBC, hence H1 and
A1 cannot happen. Driver intervention: the L2 system returns control to the driver.

No hazards are detected in the golden fault-free runs, but Random FI and
TGFI cause H2 hazards. The time to hazard is shown in Fig. 4. For both ran-
dom FI and TGFI, hazards are encountered between the one and two second

7

Fig. 5: Fault injection in left-turn control command branch in LBC. Four waypoints
(circled in green) are correct but one (circled in yellow) is incorrect.

mark. There is a near-complete overlap between the experiments that have lane
invasions and the experiments that have hazards, i.e., if the fault causes a lane
invasion, then the fault is also severe enough to cause a hazard shortly after.
Similar to the lane invasions, TGFI finds more hazards than Random FI.

Every hazard for Random FI and TGFI scenarios results in an accident,
indicating that LBC has a very limited ability to function under critical faults.
Indeed, LBC does not have alerts or safety checks. TGFI triggers more accidents
than Random FI.

We also evaluate the impact of faults in the convolution branches at the
end of the network (see Fig. 1a) corresponding to high-level control commands.
Fig. 5 presents the results of a fault injected in the branch corresponding to the
left turn control command: four waypoints are correct, but one (yellow circle)
is clearly incorrect. When the car turns the corner, it tries to adhere to the
trajectory generated by fitting a curve to the points, but in doing so turns the
corner too widely and crashes into the wall on the side of the road.

4.2 Resilience of L2 OpenPilot

In OpenPilot, lane invasions occur often but do not always result in a hazard
or accident. 10% of golden runs and 23.4% of Random FI experiments have
lane invasions, see Table 2. TGFI-top500 shows slightly more lane invasions and
TGFI-top50 nearly triples the number of lane invasions compared to Random
FI. The time to lane invasion is shown in Fig. 6(a): most of the lane invasions
occur between the 15 and 20 second marks.

The golden runs never result in a hazard, but 2.6% of Random FI experiments
result in a hazard that typically occurs between the 5 and 10 second marks,

0 10 20 30 40 50
Time to Lane Invasion (seconds)
0.00

0.25

0.50

0.75

1.00

CD
F

0 10 20 30 40 50
Time to Hazard (seconds)

0.0

0.1

0.2

CD
F

0 10 20 30 40 50
Time to Driver Intervention

0.0

0.1

0.2

0.3

CD
F

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Golden Random TGFI-top500 TGFI-top50
Fig. 6: OpenPilot Supercombo: Time to lane invasion, hazard, and driver intervention.
No hazards or driver interventions were observed in golden runs. CDFs do not reach
1.0 since some experiments do not have a lane invasion, hazard, or driver intervention.

8

see Fig. 6(b). 10.8% of TGFI-top500 experiments and 22.7% of TGFI-top50
experiments result in a hazard (1.3% and 1.5% of them experience both H1 &
H2 hazards for TGFI-top500 and TGFI-top50, respectively). Hazards only occur
after second 15 in the simulation and show a steeper increase towards second
50. The H1 hazard that occurs when the vehicle follows another car too closely
occurs in 7.9% of simulations for TGFI-top50 and the H2 hazard, which indicates
a significant lane invasion, occurs in 16.3% of experiments for TGFI-top50, see
Table 2. TGFI results in more hazards than than Random FI.

Since OpenPilot requires the driver to resume control of the vehicle in the case
of dangerous situations, hazards are often masked and accidents rarely happen,
see Table 2. We will discuss this mitigation technique in detail in 5.2.

5 Mitigation

The effects of faults can be mitigated through several approaches, many of which
are orthogonal to one another [11, 24, 32]. In this section, we examine different
mitigation techniques for the two AV cases examined here.

5.1 L4 LBC: Ranger

Ranger [11] is a popular, state-of-the-art fault corrector which employs range
restriction on neuron activation values to protect ML models from faults with
negligible overhead. Here, we present a proof-of-concept mitigation of applying
Ranger to LBC. To implement Ranger, we insert range restriction into the model
following activation layers at crucial points in the network, such as after convolu-
tion layers. Each protection layer has a pair of minimum and maximum activation
values to use as bounds, which are set after profiling through golden runs under
cloudy (ideal) weather. This step is performed once, before the deployment of
the protected model with Ranger. When Ranger is active, any activation values
outside the ranges defined by Ranger are clipped to the bound.

We examine the effectiveness of Ranger using the TGFI-top500 experiments,
see Fig.7. We examine three CARLA driving scenarios: curved road, turn at
intersection, and straight road. A combination of clear and inclement weather
conditions (cloudy, rainy, sunset, wet) is also used to offer insight into how well
the fault mitigation functions in unseen conditions. Ranger improves the re-
siliency of LBC across all three driving scenarios and all weather conditions.
Significant improvements are observed under cloudy (ideal) weather conditions.

5.2 L2 OpenPilot: Driver Intervention

As an L2 ADAS, OpenPilot raises driver alerts and returns control to the
driver when a problem is detected by its safety checker, i.e., driver interven-
tion. We record the time to driver intervention as a CDF in Fig. 6(c). The

9

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Cloudy; No Ranger
Cloudy; Ranger

Rainy; No Ranger
Rainy; Ranger

Sunset; No Ranger
Sunset; Ranger

Wet; No Ranger
Wet; Ranger

Curved
road

Turn at
intersection

Straight
road

(a) Lane Invasions

0

25

50

75

100

%
 E

xp
er

im
en

ts
 w

/ L
an

e
In

va
sio

n

Curved
road

Turn at
intersection

Straight
road

(b) Hazards

0
2
4
6
8

10
12
14

%
 E

xp
er

im
en

ts
 w

/ H
az

ar
d

Fig. 7: Comparison of LBC without Ranger vs. LBC with Ranger for the TGFI-500
scenario.

golden runs never require driver intervention and are therefore not plotted. Ran-
dom FI results in driver intervention in 21.4% of experiments, occurring close
to the 10 second mark. The TGFI-top500 and TGFI-top50 experiments show
an initial jump in driver intervention early in the simulation. OpenPilot has
3 types of driver alerts which may be displayed when control of the vehicle
is returned to the driver, see Table 3. In fault injection experiments, Planner-
Error/noEntry alerts are the most common ones. These alerts indicate that the
Model Predictive Control (MPC) cannot find a feasible solution for lateral plan-
ning (steering) and longitudinal planning (gas/brake) and releases control to
the driver, successfully mitigating the fault before any hazard is triggered. The
CanError/ImmediateDisable alerts indicate communication errors and occur the
least frequently. The steerSaturatedWarning alerts also rarely occur and they in-
dicate that the car is swerving sharply in the presence of the fault. This indicates
that TGFI finds faults that are more rare and more challenging for OpenPilot
safety checks to detect and mitigate.

Table 3: Experiments where the driver is alerted to a problem in OpenPilot.
Alert Golden Runs Random TGFI-top500 TGFI-top50

plannerError/noEntry 0% 19.8% 10.88% 4.01%
canError/immediateDisable 0% 0.5% 0.1% 0.4%

steerSaturated/warning 0% 1.9% 2.98% 3.85%

6 Case studies and Discussion

In this section, we use LBC as a case study to evaluate and discuss the impact
of different faults, layers of DNN and bit positions on AV resilience.

6.1 Importance of Layer Depth for Resilience

Table 4 shows four distinct experiments with corrupted LBC models that iden-
tify the importance of the layer depth where the fault occurs. When Ranger is
not applied and if the fault is injected in the earlier DNN layers (experiments

10

Exp. Layer Lane Invasion Accidents Lane Invasion Accidents
ID ID (No Ranger) (No Ranger) (Ranger) (Ranger)
1 10 100% 100% 0% 0%
2 30 100% 100% 0% 0%
3 37 92.5% 100% 91% 100%
4 38 53.3% 84.7% 32.7% 78.4%
Table 4: Case study of four distinct corrupted LBC models.

1 and 2), resilience is severely affected: all faults result to accidents. Faults oc-
curring earlier in the network have more time to propagate horizontally across
the neurons, resulting in more severe corruption. This propagation still occurs
even if the fault site is relatively deep into the ResNet34 section of the network,
as experiment 2 with injection in layer 30 shows. The fault sites of experiments
3 and 4 are in a the final layers in the network, therefore error propagation is
minimal and the severity of corruption in the final output is lessened.

With Ranger, results for faults injected in layer 10 and 30 improve from 100%
accidents to 0% accidents. For faults in layer 37 and 38, applying Ranger still
results in a majority of accidents. Since these two layers are at the end of the
network, the clipped Ranger bound used as output, differs significantly from the
ideal one.

6.2 Sensitivity to Single- and Multi-bit Faults

We analyze the sensitivity of LBC to single- and multi-bit faults [33]. We evalu-
ate how the bit position(s) and the number of bit flips affect hazards in the LBC
model under cloudy (“easy”) and rainy (“challenging”) weather conditions using
TGFI-500, as shown in Fig. 8. We compare fault injection outcomes using differ-
ent numbers and locations of bit flips: single-bit exponent, single-bit mantissa,
double-bit (the fault model majorly used in this paper), and triple-bit. These
experiments show that single-bit exponent causes the most hazards, followed by
triple-bit, double-bit, and finally single-bit mantissa. This experiment also shows
that lane invasions and hazards for non-detectable triple bit faults are prominent,
thus their mitigation for safety is of paramount importance.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Single Bit Error:
Exponent; Rainy
Single Bit Error:
Mantissa; Rainy

Double Bit Error; Rainy
Triple Bit Error; Rainy

Single Bit Error:
Exponent; Cloudy
Single Bit Error:
Mantissa; Cloudy

Double Bit Error; Cloudy
Triple Bit Error; Cloudy

Curved
road

Turn at
intersection

Straight
road

(a) Lane Invasions

0

25

50

75

100

%
 E

xp
er

im
en

ts
 w

/ L
an

e
In

va
sio

n

Curved
road

Turn at
intersection

Straight
road

(b) Hazards

0

5

10

15

20

25

%
 E

xp
er

im
en

ts
 w

/ H
az

ar
d

Fig. 8: Bit position analysis for LBC and the TGFI-top500 experimental campaign.

11

6.3 Lessons Learned from L4 LBC and L2 OpenPilot

L4 LBC and the L2 OpenPilot have similarities: both ML models are structured
around a backbone CNN which is more vulnerable to faults in earlier layers
than later ones. Faults are commonly masked when they occur in weights of low
importance. Meanwhile, structural differences of the DNNs affect their resilience:
LBC has high-level command branches that activate or deactivate parts of the
network depending on the driving scenario, thus possibly masking faults during
inference. OpenPilot uses all layers in every inference, meaning that faults can
only be masked by the network itself, rather than circumstances around its use.
Secondly, the format of the DNN output is different. LBC outputs waypoints
while OpenPilot’s Supercombo outputs information about lanelines, road edges,
lead vehicle position, and many other variables. The availability of these different
outputs in OpenPilot allows for the implementation of safety checks.

For OpenPilot, we find that many accidents are not mitigated by the system
safety checks. This speaks to both the need for the improvement of existing
checks, and for the implementation of new ones. Adding DNN-oriented error
detection/correction mechanisms would improve AV resilience. High-level checks,
like many of those employed in OpenPilot, cannot detect potential incorrect
outputs but while imperfect, they provide a blueprint for developing resilience
in L4 systems like LBC.

7 Related Work

Past studies have shown that faults [34] can cause hazardous behavior in AVs.
DeepTest [1] focuses on testing the reliability of autonomous driving systems and
safety engineering techniques for autonomous systems are investigated in [35],
but these works do not consider soft errors. Other works examine the fault space
for AVs through Bayesian fault injection [34] and rely on large amounts of random
fault injection experiments. [36] explores the problem of effective safety checks
for an ML-based AV.

[2] uses duplication of computation and temporal data diversity to improve
the resilience of AVs with LBC but requires additional hardware. On the Open-
Pilot side, [12] focuses on hazard coverage and fault injection, but does not study
its ML model. [37,38] present attacks on the CAN bus or camera input for a ve-
hicle using OpenPilot. Unlike these works, we focus on the effects of unintended
faults rather than attacks.

Most importantly, both for LBC and Openpilot, we identify corner cases
that are otherwise hard to find: we identify which portions of their DNNs are
vulnerable to faults and result in AV safety violations, i.e., we do not simply
examine the accuracy of DNNs for classification but their holistic effect into the
AV operation.

12

8 Conclusions

We perform strategic resilience evaluation of the neural networks of two au-
tonomous vehicles against transient faults. We focus on an L4 system widely
used in academia and an L2 ADAS system which is widely deployed on the
road. We find that both systems are vulnerable to single- and multi-bit faults
which may induce hazards/accidents. We use the Taylor criterion to strategically
identify the most important weights for reliability in the DNNs used in the L4
LBC and L2 Openpilot and inject errors on those weights using TGFI. TGFI is
efficient in identifying vulnerabilities that result in hazards and accidents. We
also examine the effectiveness of mitigation in AVs. For L4 self-driving, miti-
gation techniques such as Ranger can be effective at minimizing the impact of
faults. Driver intervention is a crucial contributing factor to the security of L2
systems.

Acknowledgments

This material is based upon work supported by two Commonwealth Cyber Ini-
tiative (CCI) grants (#HC-3Q24-047 and COVA C-Q122-WM-02).

References

1. Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the 40th
International Conference on Software Engineering, pages 303–314, 2018.

2. Saurabh Jha, Shengkun Cui, Timothy Tsai, Siva Kumar Sastry Hari, Michael B
Sullivan, Zbigniew T Kalbarczyk, Stephen W Keckler, and Ravishankar K Iyer.
Exploiting temporal data diversity for detecting safety-critical faults in av compute
systems. In 2022 52nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 88–100. IEEE, 2022.

3. Vinicius Fratin, Daniel Oliveira, Caio Lunardi, Fernando Santos, Gennaro Ro-
drigues, and Paolo Rech. Code-dependent and architecture-dependent reliability
behaviors. In 2018 48th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN), pages 13–26. IEEE, 2018.

4. Shrikanth Ganapathy, John Kalamatianos, Bradford M Beckmann, Steven Raasch,
and Lukasz G Szafaryn. Killi: Runtime fault classification to deploy low voltage
caches without mbist. In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 304–316. IEEE, 2019.

5. Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W Keckler. Understanding error propa-
gation in deep learning neural network (dnn) accelerators and applications. In
Proceedings of Supercomputing, pages 1–12, 2017.

6. L. S. Karumbunathan. NVIDIA Jetson AGX Orin Series: A Gi-
ant Leap Forward for Robotics and Edge AI Applications, 2022.
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-
orin/nvidia-jetson-agx-orin-technical-brief.pdf.

7. J. Yoshida. Toyota Case: Single Bit Flip That Killed, 2013.
https://www.eetimes.com/toyota-case-single-bit-flip-that-killed.

13

8. Road vehicles — Functional safety. Standard, International Organization for Stan-
dardization, Geneva, CH, December 2018.

9. Régis Leveugle, A Calvez, Paolo Maistri, and Pierre Vanhauwaert. Statistical fault
injection: Quantified error and confidence. In 2009 Design, Automation & Test in
Europe Conference & Exhibition, pages 502–506. IEEE, 2009.

10. Fernando Fernandes dos Santos, Pedro Foletto Pimenta, Caio Lunardi, Lucas
Draghetti, Luigi Carro, David Kaeli, and Paolo Rech. Analyzing and increas-
ing the reliability of convolutional neural networks on gpus. IEEE Transactions
on Reliability, 68(2):663–677, 2018.

11. Zitao Chen, Guanpeng Li, and Karthik Pattabiraman. A low-cost fault cor-
rector for deep neural networks through range restriction. In 2021 51st An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 1–13. IEEE, 2021.

12. Abu Hasnat Mohammad Rubaiyat, Yongming Qin, and Homa Alemzadeh. Ex-
perimental resilience assessment of an open-source driving agent. In 2018 IEEE
23rd Pacific rim international symposium on dependable computing (PRDC), pages
54–63. IEEE, 2018.

13. Saurabh Jha, Timothy Tsai, Siva Hari, Michael Sullivan, Zbigniew Kalbarczyk,
Stephen W Keckler, and Ravishankar K Iyer. Kayotee: A fault injection-based
system to assess the safety and reliability of autonomous vehicles to faults and
errors. arXiv preprint arXiv:1907.01024, 2019.

14. Saurabh Jha, Shengkun Cui, Subho Banerjee, James Cyriac, Timothy Tsai, Zbig-
niew Kalbarczyk, and Ravishankar K Iyer. Ml-driven malware that targets av
safety. In 2020 50th annual IEEE/IFIP international conference on dependable
systems and networks (DSN), pages 113–124. IEEE, 2020.

15. Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Im-
portance estimation for neural network pruning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 11264–11272, 2019.

16. Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by
cheating. In Conference on Robot Learning, pages 66–75. PMLR, 2020.

17. Comma.ai. Supported Cars by OpenPilot.
https://github.com/commaai/openpilot/blob/master/docs/CARS.md.

18. SAE International. SAE Levels of Driving Automation™ Refined for Clarity and
International Audience. https://www.sae.org/blog/sae-j3016-update, 2021.

19. Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey
Levine, and Yarin Gal. Can autonomous vehicles identify, recover from, and adapt
to distribution shifts? In International Conference on Machine Learning, pages
3145–3153, 2020.

20. Marin Toromanoff, Emilie Wirbel, and Fabien Moutarde. End-to-end model-free
reinforcement learning for urban driving using implicit affordances. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7153–7162, 2020.

21. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

22. Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International Conference on Machine Learning, pages
6105–6114, 2019.

23. Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. Carla: An open urban driving simulator. In Conference on Robot Learning,
pages 1–16, 2017.

14

24. Gurunath Kadam, Evgenia Smirni, and Adwait Jog. Data-centric reliability man-
agement in gpus. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 271–283. IEEE, 2021.

25. Majed Valad Beigi, Yi Cao, Sudhanva Gurumurthi, Charles Recchia, Andrew Wal-
ton, and Vilas Sridharan. A systematic study of ddr4 dram faults in the field. In
2023 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pages 991–1002. IEEE, 2023.

26. The Linux Foundation. Open neural network exchange: The open standard for
machine learning interoperability. https://onnx.ai/, 2019.

27. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems, 32, 2019.

28. N. Leveson and J. Thomas. An STPA primer. Cambridge, MA, 2013.
29. Xugui Zhou, Bulbul Ahmed, James H Aylor, Philip Asare, and Homa Alemzadeh.

Data-driven design of context-aware monitors for hazard prediction in artificial
pancreas systems. In 2021 51st Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 484–496. IEEE, 2021.

30. Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. Fault site pruning for prac-
tical reliability analysis of gpgpu applications. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 749–761, 2018.

31. Harald Schafer, Eder Santana, Andrew Haden, and Riccardo Biasini. A commute
in data: The comma2k19 dataset. arXiv preprint arXiv:1812.05752, 2018.

32. Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni. Enabling software re-
silience in GPGPU applications via partial thread protection. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-
30 May 2021, pages 1248–1259, 2021.

33. Lishan Yang, Bin Nie, Adwait Jog, and Evgenia Smirni. Practical resilience analysis
of GPGPU applications in the presence of single- and multi-bit faults. IEEE Trans.
Computers, 70(1):30–44, 2021.

34. Saurabh Jha, Subho S. Banerjee, Timothy Tsai, Siva Kumar Sastry Hari,
Michael B. Sullivan, Zbigniew T. Kalbarczyk, Stephen W. Keckler, and Ravis-
hankar K. Iyer. Ml-based fault injection for autonomous vehicles: A case for
bayesian fault injection. In 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2019, Portland, OR, USA, June 24-27,
2019, pages 112–124, 2019.

35. Matt Osborne, Richard Hawkins, and John McDermid. Analysing the safety of
decision-making in autonomous systems. In International Conference on Computer
Safety, Reliability, and Security, pages 3–16. Springer, 2022.

36. Francesco Terrosi, Lorenzo Strigini, and Andrea Bondavalli. Impact of machine
learning on safety monitors. In International Conference on Computer Safety,
Reliability, and Security, pages 129–143. Springer, 2022.

37. Xugui Zhou, Anna Schmedding, Haotian Ren, Lishan Yang, Philip Schowitz, Ev-
genia Smirni, and Homa Alemzadeh. Strategic safety-critical attacks against an
advanced driver assistance system. In 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pages 79–87. IEEE, 2022.

38. Xugui Zhou, Anqi Chen, Maxfield Kouzel, Haotian Ren, Morgan McCarty, Cristina
Nita-Rotaru, and Homa Alemzadeh. Runtime stealthy perception attacks against
dnn-based adaptive cruise control systems. arXiv preprint arXiv: 2307.08939, 2024.

15

