
1

Enabling CBRS Experimentation through an
OpenSAS and SDR-based CBSD

Oren Rodney Collaco∗, Mayukh Roy Chowdhury∗, Aloizio Pereira da Silva∗, Luiz DaSilva∗
∗ Commonwealth Cyber Initiative, Virginia Tech, USA, {orenrc, mayukhrc, aloiziops, ldasilva}@vt.edu

Abstract—The increased demand for spectrum has motivated
the Federal Communications Commission (FCC) to open band
48, also known as the Citizen Broadband Radio Service (CBRS)
band, spanning 3.55 to 3.7 GHz, for shared wireless broadband
use. Access and operations in the CBRS band is managed
by a dynamic Spectrum Access System (SAS) that enables
seamless spectrum sharing between incumbent and secondary
users. In this paper, we demonstrate an enhanced version of
an open source SAS [1], OpenSAS, with added functionality
to showcase interaction between General Authorized Access
(GAA) and Priority Access License (PAL) user tiers. We further
showcase the use of the Google SAS Test Environment [2] with
OpenSAS and a Software-defined Radio (SDR)-based CBRS
Base Station Device (CBSD) developed by our team. Spectrum
sharing is achieved by using a client on the CBSD that is
in continuous communication with the SAS to conform to
its spectrum usage and transmission power rules at a given
location. Our demo steps through the entire SAS-CBSD cycle
which includes registration, spectrum inquiry, grant request,
heartbeat request, grant relinquishment, and de-registration.

Index Terms—CBRS, Experimentation, Open source, Spec-
trum Access System (SAS), Spectrum Sharing, Testbed

I. INTRODUCTION

The US Federal Communications Commission (FCC)
decided in 2015 to allow shared commercial use of the
3550-3700 MHz band, the Citizen Broadband Radio Service
(CBRS) band. A system to protect these users from damaging
interference is required, which led to the definition of a
Spectrum Access System (SAS) responsible for granting
authorization and preventing damaging interference from
CBRS Base Station Devices (CBSDs) transmitting on the
same channel as the incumbents. Each CBSD has to receive
a grant from the SAS before transmitting and to receive valid
heartbeat responses to continue transmitting.

Our demo for the first time shows a Software-defined Ra-
dio (SDR)-based CBSD communicating with both an open-
source SAS, OpenSAS, and the Google SAS test environment.
OpenSAS is an extended version of the SAS developed at
Virginia Tech and described in [1]. OpenSAS has been built
to the same specifications as used by a commercial SAS,
which enables replicating a CBRS ecosystem in a testbed
environment.

Using OpenSAS we showcase two use cases. The first
involves communication between a SDR-based CBSD proto-
type developed by us with OpenSAS and the Google SAS.
The second shows two tiers of users (General Authorized
Access (GAA) and Priority Access License (PAL)) in the
CBRS ecosystem coexisting in the same frequency band. To

the best of our knowledge, this is the first demonstration
of a Wireless Innovation Forum (WINNF) specification-
compliant open source SAS verified using the Google SAS
Test Environment.

The contribution of our work is twofold. First we extend
the open source SAS developed at Virginia Tech [1] to en-
able connectivity with other compliant commercial SAS. To
achieve this, we replaced the socketIO connection between
the SAS server and the CBSD client with an Hypertext
Transfer Protocol Secure (HTTPS) connection. Second, we
connect our CBSD client to the Google SAS test environment
and to OpenSAS to validate the interface compliance with
WINNF specifications for commercial SAS.

II. DEMO ARCHITECTURE

The demo architecture, depicted in Figure 1, consists of
three main components: The OpenSAS server, the Google
SAS Test Environment, and the SDR-based CBSD prototype.

Fig. 1: Demo architecture.

a) OpenSAS: OpenSAS implements an HTTPS server
where the Uniform Resource Locator (URL) endpoints for
the requests can be accessed. OpenSAS contains modular
functions such as registration, spectrum inquiry, and grant
request for WINNF-specified requests from a CBSD. The
grant algorithm works as follows: The HTTPS server calls the
corresponding modular functions such as register() based on
the URL in the HTTPS GET request. All the required logic
for the implementation of the registration, such as verifying
the format of the message and checking for errors or values
out of bounds in the request message, are carried out. A
database entry is then created for the CBSD based on its
request message. For the purpose of this demo, we assume
that the CBSD antenna transmits in a spherical pattern. When
making the decision whether another CBSD interferes with



2

an existing CBSD, we check the distance between the CBSDs
and if the distance is above a threshold, we assume there is
no interference.

b) Google SAS Test Environment: Google provides a
test environment for interoperability testing between a CBSD
and the Google SAS. In our demo, we connect our prototype
CBSD to verify that the SAS-CBSD interface is compliant
with WINNF specifications and thus interoperable with a
commercial SAS.

c) SDR-based CBSD Prototype: Our CBSD prototype
consists of a SAS Client and the srsRAN software stack
for a 5G base station. The SAS Client is responsible for
communicating with the SAS and controlling the base station
based on the response. Our SDR-based CBSD prototype is
implemented in one small-factor computer (Intel NUC) and
an N310 SDR.

III. DEMONSTRATION

Fig. 2: Demo setup.

Part 1: Compliance testing using Google SAS Test Envi-
ronment In this part of the demo, we step through all phases
of the interaction between our SDR-based CBSD prototype
and the Google SAS. These include registration, spectrum
inquiry, grant request, heartbeat, grant relinquishment, and
deregistration. We display this interaction in real-time using a
web-based graphical interface provided by Google SAS. This
part validates the compliance of the SAS-CBSD protocol
with the WINNF specifications.

Part 2: GAA & PAL interaction using OpenSAS We
use OpenSAS to demonstrate the interaction between two
tiers of users in the CBRS ecosystem. We set up two CBSD
prototypes, with one of them registered as a PAL user and
the other as a GAA user in OpenSAS. WINNF specifies
maintaining a list of CBSDs that have a PAL Protection
Area and using that list to ascertain if a requesting CBSD
is on the list [3]. For the purpose of this demo, we have
used the FCC Identifier (ID) of the CBSD as the PAL
identifier. We first register and request a grant for a certain
frequency using the first CBSD and start heartbeating. Next,
we register and request a grant from the second CBSD,
which is registered as a PAL user in the OpenSAS, in the
same frequency. As expected, the GAA CBSD receives a
heartbeat response without a new transmit expiry time and
is forced to stop transmitting. This is observed in real-time
on the spectrum view of the OpenSAS dashboard as seen
in Figure 3. The PAL CBSD, on the other hand, receives
the grant for transmitting. We have run simulations using the

Fig. 3: OpenSAS spectrum view.

OpenSAS to determine how the number of granted CBSDs
affect the latency to acquire a new grant. The total grant
latency, comprised of the roundtrip request latency and the
OpenSAS processing latency, increases linearly with the
number of granted CBSDs, as seen in Figure 4. This result
can be explained by the grant lookup and distance calculation
time. For every new grant request, the SAS calculates the
distance of the requesting CBSD from every other granted
CBSD. Thus, the number of granted CBSDs determines the
number of distance computations the OpenSAS needs to
perform, which directly corresponds to the total grant latency.
To improve this, we propose creating zones and checking
within the zone when a new CBSD is requesting a grant
as future work. This should reduce the grant latency when
a considerable amount of CBSDs spread across a region are
connected since the lookup is limited to within a zone. Some
other future work includes using free space path loss and
antenna characteristics to calculate the CBSD interference
area instead of a distance based model which should reduce
the grant latency further and improve interference accuracy.

Fig. 4: Grant latency with increasing number of CBSDs.
ACKNOWLEDGEMENTS

This work was supported by Commonwealth Cyber Ini-
tiative (CCI), an investment in the advancement of cyber
R&D, innovation, and workforce development. Visit CCI at:
www.cyberinitiative.org.

REFERENCES

[1] Wireless@VT. Spectrum access system. https://github.com/vtwireless/
SAS Accessed 14 Nov 2022.

[2] Google. Understand the differences between the test & production
SAS environments. https://support.google.com/sas/answer/9288077?hl=
en&ref topic=9350032 Accessed 6 Jan 2023.

[3] WInnForum. Signaling protocols and procedures for citizens broadband
radio service (CBRS). https://winnf.memberclicks.net/assets/CBRS/
WINNF-TS-0016.pdf Accessed Jan 2023.


