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Abstract—In this demonstration, we present the RIC Orches-
trator (RIC-O), a system that optimizes the deployment of Near
Real-time RAN Intelligent Controller (Near-RT RIC) compo-
nents across cloud and edge computing nodes. RIC-O quickly and
efficiently adapts to sudden changes and redeploys components
as needed. We describe small-scale real-world experiments using
RIC-O and a disaggregated Near-RT RIC within a Kubernetes
deployment to demonstrate its effectiveness.

I. INTRODUCTION

The Open RAN (O-RAN) Alliance [1] has established a
vision of open, virtualized, fully interoperable, and intelligent
mobile networks [2]. This vision can transform the Radio
Access Network (RAN) industry by lowering barriers to en-
trance, decreasing vendor lock-in, and fostering innovation [3].
O-RAN controllers run Artificial Intelligence (AI) or Machine
Learning (ML) based applications that establish control loops
with the RAN nodes. In this context, the O-RAN architecture
defines two RAN controllers: Non Real-time RAN Intelligent
Controller (Non-RT RIC) and Near Real-time RAN Intelligent
Controller (Near-RT RIC). The Non-RT RIC runs rApps with
control loops with time intervals above 1s. The Near-RT RIC
runs applications called xApps with control loops with time
intervals between 10ms and 1s. The specific time constraint of
a control loop depends on the RAN function being managed
by the corresponding xApp. In a large RAN, the Near-RT RIC
(or some of its components) and latency-sensitive xApps (i.e.,
control loop with latency as low as 10ms) must be replicated
and assigned to manage a limited set of RAN nodes. Or-
chestrating multiple Near-RT RIC instances and determining
where their components must run is a challenging resource
allocation problem, considering the mobile network dynamics.

This work demonstrates the RIC Orchestrator (RIC-O) [4],
which deploys components of a Near-RT RIC platform in a
cloud-edge computing environment. The RIC-O is designed
to minimize overall deployment costs while meeting stringent
latency requirements. Moreover, RIC-O can dynamically rede-
ploy components in response to sudden changes in the network
infrastructure running on an extended Kubernetes (K8s).
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II. RIC-O DESIGN CHOICES AND IMPLEMENTATION

RIC-O is an orchestrator enabling efficient and dynamic
placement of the components of disaggregated Near-RT RIC
in a cloud-edge computing environment. RIC-O com-
prises two main building blocks: Monitoring System run-
ning on Near-RT RIC and RIC-O Components running on
Non-RT RIC. Figure 1 shows a high-level view of the main
building blocks composing our demonstration scenario. The
RIC-O Components building block includes RIC-O Optimizer
and RIC-O Deployer components. The K8s Control Plane
manages the worker nodes and pods in the cluster. The Moni-
toring System analyzes the resource usage of the Near-RT RIC
components, E2 Nodes, and Open Cloud (O-Cloud) infras-
tructure. Moreover, it monitors the control loop latency of
E2 Nodes and alerts the RIC-O Optimizer component when
control loop thresholds are violated. The control loop consists
of a message exchange between the E2 Node (source) and a
given xApp (destination) through the E2 Termination (E2T)
component. The xApps control and optimize the RAN.
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Fig. 1. Scenario of RIC-O demonstration with main architectural blocks.

Near-RT RIC components are split up according to their
latency requirements. The components that execute tasks



without stringent latency requirements are grouped into the
Near-RT RIC Management building block. However, certain
xApps and E2T components need to be placed in the cloud-
edge infrastructure to meet their stringent latency require-
ments. The xApps provide services for each Software Defined
Radio (SDR)-based E2 Node connected to their corresponding
E2T. Each User Equipment (UE) connects to a Universal
Software Radio Peripheral (USRP) X310 SDR networked
to a given E2 Node. Given the computing nodes on which
the Near-RT RIC components are deployed, it is possible to
calculate the signaling latency between an E2 Node and an
xApp (and potentially other Near-RT RIC components). This
control loop round-trip time of a latency-sensitive xApp is
monitored on the E2 Node.

When a control loop threshold violation is detected, the
Monitoring System alerts the RIC-O Optimizer to compute
a new placement strategy for the Near-RT RIC components.
The goal is to minimize the overall cost of running the
Near-RT RIC. The optimization strategy adopted by the RIC-O
Optimizer is described in [4]. After computing an efficient
solution, the RIC-O Optimizer sends the outcome to the RIC-O
Deployer, which redeploys the Near-RT RIC components in
case the solution differs from the previous one. The RIC-O
Deployer uses the O2 interface defined by O-RAN to com-
municate with the cloud-native infrastructure and apply the
new placement solution.

Two variants of E2 Nodes are considered for the demon-
stration of RIC-O. The first includes an enhanced version
of the open-source E2 Node simulator. The second involves
an O-RAN-compatible end-to-end software-based RAN im-
plementation using the open-source Software Radio Systems
RAN (srsRAN) suite [5]. A Long-term Evolution (LTE)
mobile network is set up using srsRAN’s Evolved Packet
Core (EPC) and srsRAN’s Evolved Node B (eNB). This E2
Node communicates with E2T using an E2 agent over the
SCTP-based E2 interface. Moreover, Commercial Off-The-
Shelf (COTS) UEs connect to the LTE network, and trigger
RAN actions that impact the control plane signaling latency
between the E2 Node and E2T.

III. DEMONSTRATION FLOW

We demonstrate RIC-O in two scenarios using two bare
metal computers and six Virtual Machines (VMs). Three VMs
host a K8s cluster running Near-RT RIC, and three VMs run
the mobile network. Moreover, two COTS mobile phones work
as UEs. The first scenario involves a sudden increase in latency
in the path serving a specific E2 Node. Initially, we have
two E2 Nodes (A and B) attached to the same E2T, which
connects in xApp with an enhanced version of the Bouncer
service in K8s Worker 1. In this context, the control loop
is represented by the solid red arrows in Fig. 1, and the
10ms latency constraint is met. Then, we insert latency in the
link between E2 NodeB and K8s Worker 1 to demonstrate
the orchestration of RIC-O. This latency can be observed
in the "Control loop failure" event in Fig. 2. After 10s, the
Monitoring System determines that this event is a consistent

control loop violation and notifies RIC-O to compute a new
solution, as indicated by "Optimization trigger". RIC-O finds
a solution and applies the new placement nearly 5s later, as
noted in "Start to redeploy".

RIC-O installs new E2T′ and xApp′ instances in K8s
Worker 2. Moreover, a new connection of the control loop
is established between E2 NodeB and these instances, repre-
sented by the red dotted lines in Fig. 1. In this scenario, the
Bouncer xApp service continues to be provided by the E2T to
the E2 NodeA and by xApp′ through E2T′ to the E2 NodeB.
Therefore, the control loop operates within the 10ms threshold
again, as indicated by "Control loop satisfied" in Fig. 2.

In the second scenario, K8s Worker 2 running the E2T′

and xApp′ serving E2 NodeB becomes suddenly unavailable.
As a result, the latency-sensitive control loop is disrupted. As
soon as the Monitoring System detects this event and notifies
RIC-O, it orchestrates the new placement of Near-RT RIC
components, directing E2 NodeB back to E2T.
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Fig. 2. Real-time monitoring visualization.

IV. CONCLUDING REMARKS

This demonstration shows how RIC Orchestrator (RIC-O)
efficiently orchestrates the Near-RT RIC components so they
can meet stringent latency requirements and provide failover
capacity. RIC-O efficiently orchestrates the Near-RT RIC com-
ponents across the edge-cloud computing nodes in these
scenarios.
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