
AI/ML Data-driven Control Loop for Managing
O-RAN SDR-based RANs

Jaswanth S. R. Mallu, Joao F. Santos, Aloizio P. da Silva, Prateek Sethi, Vikas Radhakrishnan, Luiz DaSilva
Commonwealth Cyber Initiative, Virginia Tech

{jaswanthsaireddy, joaosantos, aloiziops, prateek20, vikaskrishnan, ldasilva}@vt.edu

Abstract—Open Radio Access Network (O-RAN) introduced
a common control and management overlay, allowing mobile
network operators to embed networking intelligence using
different types of third-party applications: xApps for real-time
control loops, and rApps for Artificial Intelligence (AI)/Machine
Learning (ML)-based classification and decision-making. How-
ever, the development of reference implementations for rApps
lags behind the progress in other O-RAN-related standardiza-
tion efforts. In this demonstration, we showcase a proof-of-
concept rApp capable of generating policies to steer the behavior
of xApps, and detail how we extended a RAN slicing xApp to
react to such policies, creating the first experimental ML-based
RAN slicing platform based on O-RAN.

Index Terms—Open Radio Access Network, rApp, xApp,
RAN Intelligent Controller, RAN Orchestration

I. INTRODUCTION

The Open Radio Access Network (O-RAN) Alliance in-
troduced a paradigm shift that includes the disaggregation of
RAN components, the softwarization of RAN functionality,
and the openness of RAN control interfaces and management
Application Programming Interfaces (APIs) [1]. One of the
key features of the O-RAN ecosystem is its common control
and management overlay, allowing mobile network operators
to orchestrate their entire RAN using custom control logic
via standardized third-party applications [2]. This common
control and management overlay is functionally split into
two RAN Intelligent Controllers (RICs), according to the
timescale of their operation. The Near Real-Time RAN
Intelligent Controller (Near-RT RIC) hosts time-sensitive
applications, known as xApps, that perform closed-loop
control over RAN components in the order of 10-–1000 ms,
e.g., load balancing and scheduling [3]. The Non Real-Time
RAN Intelligent Controller (Non-RT RIC) hosts applications
known as rApps, with a lasting effect based on historical data
trends, taking longer than 1000 ms, e.g., data analytics and
Artificial Intelligence (AI)/Machine Learning (ML) model
training to optimize RAN parameters [4].

Both xApps and rApps are cloud-based microservices,
discrete and modular software components that provide spe-
cific functionality [1]. While of complementary nature and
conceptually similar, the standardization and prototyping of
xApps and rApps are moving at very different paces. The
O-RAN specifications that standardize xApps and their inter-
faces are mature and accompanied by open-source reference
implementations that guide the development of new xApps by
academia and industry. The availability of these resources has
led to a number of research efforts that design, simulate, and

Fig. 1: Architectural components of our data-driven control
loop for managing O-RAN SDR-based RANs.

experimentally verify xApp operation in practical settings [4].
Conversely, the standardization of rApps, their interfaces, and
their generation of policies to interact with xApps lag signif-
icantly behind. Consequently, research efforts on rApps (and
their interaction with xApps) have been primarily limited to
theoretical works that model the performance or simulate
their operation. To the best of our knowledge, there are no
existing open-source prototypes of rApps able to interface
with the Near-RT RIC to control the behaviour of the RAN.

In this demo, we showcase the first proof-of-concept rApp
capable of generating policies and controlling the behavior
of xApps, and its integration with the NexRAN RAN slicing
xApp described in [3], creating the first experimental ML-
based RAN slicing platform based on O-RAN. Our platform
allows us to experiment with different ML-based strategies
for RAN slicing that leverage information about user demand,
evaluate their overall performance in over-the-air scenarios
using Software Defined Radios (SDRs) and open-source
radio stacks, and demonstrate the autonomous creation and
adaptations of RAN slices in real-time.

II. DEMO DESIGN AND ARCHITECTURE

The system design of our demonstration is illustrated in
Figure 1. It includes three layers (a) Service Management and
Orchestration (SMO) and Non-RT RIC; (b) Near-RT RIC;
and (c) RAN. All layers are based on the O-RAN Software
Community E-Release. To integrate these layers [4], we
enable the key open interfaces specified by O-RAN Alliance,
namely the A1, E2, and O1 interfaces. In particular, we have
implemented the O1 interface using Kafka. We describe each
of these layers next.



Fig. 2: Demo setup of our AI/ML data-driven control loop.

A) SMO and Non-RT RIC: They are responsible for the or-
chestration of applications and control loop-based operations
with reaction time greater than 1s. This layer is deployed
as a single Kubernetes cluster using a small-factor computer
(Intel NUC). Our rApp implementing AI/ML-based decision-
making is responsible for policy selection and its logic
includes policy-based RAN slicing that uses two policies to
allocate resources based on the presence of priority users in
the network. The policies are enforced by the xApp and rApp,
which autonomously determine the proportion of resources
to allocate to each slice based on information from the RAN.

B) Near-RT RIC: It is responsible for near-real-time control
and optimization of the RAN resources by leveraging data
collection and RAN actions over the E2 interface. The Near-
RT RIC interfaces with the Non-RT RIC over the HTTP-
based A1 interface to obtain fine-grained control information
in the form of policies that steer the optimization goals of
xApps. For this demo, our Near-RT RIC hosts the NexRAN
xApp [3], which performs closed-loop RAN slicing by
changing the proportions of subframes available to each user
and collecting metrics about their performance.

C) RAN: We created a 4G RAN using srsRAN1, an open-
source radio stack, and three USRP X310 SDRs: one base
station, and two User Equipments (UEs) (representing gen-
eral users). Each SDR is connected to a small-factor com-
puter (Intel NUC) for baseband processing, and the computer
running the base station also hosts the 4G core network. In
addition, we used one Samsung S21, Commercial Off-The-
Shelf (COTS) UE (representing a priority user).

III. DEMONSTRATION

We demonstrate, for the first time, an end-to-end SDR-
based O-RAN closed-loop system that consists of Non-
RT RIC, Near-RT RIC, and RAN. This demo shows the
interaction between rApp and xApp, highlighting the AI/ML
capability of dynamically modifying the RAN’s behavior.
Figure 2 shows the demo setup and its main components.

The demo begins with collecting demand data from the
UEs and sending this data to the rApp as input via the
O1 interface. The rApp generates policies using an ML
model trained using the input from the users, and these
policies are sent to the xApp. The RAN changes its behavior
based on input from the xApp. To illustrate the closed-loop

1https://www.srsran.com/

(a) Non-RT RIC dashboard. (b) Near-RT RIC dashboard.

(c) General UE dashboard. (d) Priority UE dashboard.
Fig. 3: Dashboards shown during our end-to-end demo.

experiment, we choose a use case where RAN resources are
dynamically allocated by the rApp according to the type of
user. In Figure 1, two SDRs represent general commercial
subscribers, and the COTS UE represents a high-priority user,
such as a first-responder.

The traffic demand from each user is generated using
Iperf and sent to the SMO via the O1 interface. Once the
SMO receives the demand from the UEs, it is forwarded
to the rApp in the Non-RT RIC. Our rApp performs a
regression algorithm and a trained machine-learning model
that determine what resources are to be allocated to each user.
The rApp autonomously selects the most appropriate policy
to be enforced by the NexRAN [3] xApp. The NexRAN
xApp receives policies from the A1 mediator and, through
the E2 interface, applies them in the RAN.

The end-to-end demo workflow can be visualized through
four main dashboards as shown in Figures 2 and 3. On the
left is the Non-RT RIC dashboard (Fig. 3a) that allows us to
visualize the rApp behavior and the selected policy. In the
middle is the Near-RT RIC dashboard (Fig. 3b) that shows the
NexRAN xApp behavior after receiving the policy from the
rApp via the A1 interface. It also shows relevant information
about UEs, e.g., the UE’s International Mobile Subscriber
Identity (IMSI), and E2 node, e.g., node type and the number
of slices. On the right, the UE dashboard (Fig. 3c) depicts the
throughput achieved by general subscribers. Finally, below
the three previous dashboards, we have the high-priority user
dashboard (Fig. 3d), displaying its throughput. xApp.

ACKNOWLEDGEMENTS

This work received support from the Commonwealth Cy-
ber Initiative. For more information: www.cyberinitiative.org.

REFERENCES

[1] M. Polese et al., “Understanding O-RAN: Architecture, Interfaces,
Algorithms, Security, and Research Challenges,” arXiv preprint
arXiv:2202.01032, 2022.

[2] S. Niknam et al., “Intelligent O-RAN for beyond 5G and 6G wireless
networks,” arXiv preprint arXiv:2005.08374, 2020.

[3] D. Johnson et al., “NexRAN: Closed-loop RAN Slicing in POWDER-A
top-to-bottom Open-source Open-RAN Use Case,” in ACM Workshop
on Wireless Network Testbeds, Experimental evaluation & CHaracteri-
zation (WiNTECH), 2022, pp. 17–23.

[4] S. D’Oro et al., “OrchestRAN: Network Automation through Orches-
trated Intelligence in the Open RAN,” in IEEE Conference on Computer
Communications (INFOCOM), 2022, pp. 270–279.


