Virginia Tech® home

C3-5GPG: Cybersecure Communications and Control for 5G-enabled Power Grid

Southwest Virginia Node

Principal Investigator: 
Ali Mehrizi-Sani, associate professor, electrical and computer engineering, Virginia Tech

Co-Principal Investigators: 
Duminda Wijesekera, professor, computer science, George Mason University; Vijay Shah, research assistant professor, electrical and computer engineering, VT

Project Description: 
The overarching goal of this research proposal is to create a cybersecure distributed control, protection, and monitoring infrastructure for distributed energy resources (DER) within a microgrid power system. We capitalize on the URLLC feature of 5G communication and further evaluate our proposed algorithms via both simulation studies and 5G and power grid testbed experiments. The salient aspects of this architecture are its cybersecurity and distributed nature, which coupled with the promise of 5G communications are expected to enable a paradigm shift in power system control. The current power system practice uses proprietary communication assets to handle high-reliability applications at the transmission and generation levels. However, this legacy approach invariably limits future expansion of the system, requires specialized personnel training, and lacks interoperability. Simultaneously, for long, the power community has avoided reliance on commercial communication technologies at the distribution level because of cost of equipment, security/privacy concerns, and lack of performance. 5G communication infrastructure, however, has the promise of enabling such applications via its URLLC capabilities. In this project, we investigate the impact of practical 5G communication, considering both its promise and limitations, on the power system. We then optimally design cybersecure low-latency communications and control for 5G-enabled power grid. Our specific objectives are (i) designing coordinated control of DERs in a microgrid, (ii) optimizing 5G communications for the microgrid application, (iii) enhancing cybersecurity of 5G based communication, and (iv) evaluation via experiments and testbed demonstration.